
Scenario Customization

for

Information Extraction

by

Roman Yangarber

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Computer Science

Graduate School of Arts and Science

New York University

January, 2001

Approved:

Professor Ralph Grishman

Dissertation Advisor

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2001 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Scenario Customization for Information Extraction

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency,3701 North Fairfax
Drive,Arlington,VA,22203-1714

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

147

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

c© Roman Yangarber

All Rights Reserved 2001

To my wife and two cats.

iii

Acknowledgment

I would like to thank my advisor, Prof Ralph Grishman, for his guidance, concern

and advice in all matters academic. Without him none of this could have happened.

This research was sponsored in part by the Defense Advanced Research Projects

Agency, through the Space and Naval Warfare Systems Center San Diego under

grant N66001-00-1-8917. The results and opinions expressed herein do not neces-

sarily reflect the position or policy of the Government, and no official endorsement

should be inferred.

I thank the members of my committee, Profs Ernie Davis of New York University

and Claire Cardie of Cornell University, for their invaluable time and comments.

I thank Profs Alan Siegel, Richard Cole, and others at the helm of the Computer

Science department, who have guided it into being the productive place to work

that it is. I hope and trust they will continue to do so for those who come after me.

I thank Pasi Tapanainen and his team at Conexor Oy, in Finland, for the hours

that went into making this project work.

I thank my family members, and many friends and colleagues—Rita, Boris,

Fania, Suren, Dima, Julia, et alii,—for making graduate life almost bearable.

I should thank my step-cat, Misku, and adoptive cat, Ashley, for their thoughtful

contributions to this work.

Lastly, I thank Silja for her kindness and support—theoretical, technical, edito-

rial, emotional, and existential.

iv

Abstract

Scenario Customization for

Information Extraction

Roman Yangarber

New York University, 2000

Research Advisor: Prof. Ralph Grishman

Information Extraction (IE) is an emerging NLP technology, whose function is to

process unstructured, natural language text, to locate specific pieces of information,

or facts, in the text, and to use these facts to fill a database. IE systems today are

commonly based on pattern matching. The core IE engine uses a cascade of sets

of patterns of increasing linguistic complexity. Each pattern consists of a regular

expression and an associated mapping from syntactic to logical form. The pattern

sets are customized for each new topic, as defined by the set of facts to be extracted.

Construction of a pattern base for a new topic is recognized as a time-consuming

and expensive process—a principal roadblock to wider use of IE technology in the

large. An effective pattern base must be precise and have wide coverage. This thesis

addresses the portability problem in two stages. First, we introduce a set of tools

for building patterns manually from examples. To adapt the IE system to a new

v

subject domain quickly, the user chooses a set of example sentences from a training

text, and specifies how each example maps to the extracted event—its logical form.

The system then applies meta-rules to transform the example automatically into a

general set of patterns. This effectively shifts the portability bottleneck from build-

ing patterns to finding good examples. Second, we propose a novel methodology

for discovering good examples automatically from a large un-annotated corpus of

text. The system is initially seeded with a small set of good patterns given by the

user. An incremental learning procedure then identifies new patterns and classes

of related terms on successive iterations. We present experimental results, which

confirm that the discovered patterns exhibit high quality, as measured in terms of

precision and recall.

vi

Contents

Dedication iii

Acknowledgment iv

Abstract v

List of Figures xi

List of Tables xiii

List of Appendices xiv

1 Introduction 1

1.1 Central Issues and Concepts . 3

1.2 Objectives of the Study . 5

2 Prior Work 7

2.1 Information Extraction . 7

2.2 Other Flavors of IE . 11

2.3 Learning Methods . 11

vii

2.3.1 Semi-automatic Methods . 12

2.3.2 Automatic Methods . 12

2.3.3 Active Learning . 13

2.3.4 Learning from Un-annotated Corpora. 13

3 Overview of the IE System 17

3.1 Proteus: the Core IE Engine . 18

3.2 PET: Interactive Customization . 19

3.3 ExDisco: Automatic Discovery of Patterns 20

4 Proteus: Core System 22

4.1 Architecture . 22

4.1.1 Lexical Analysis . 23

4.1.2 Name Recognition . 25

4.1.3 Higher-Level Patterns . 28

4.1.4 Logical Phases . 31

4.2 Organization of the Pattern Base 34

4.3 Formal Evaluation . 35

4.4 Problems in Scoring IE . 37

5 PET: Example-Driven Acquisition 40

5.1 Document Browser . 41

5.2 Knowledge Base Editors . 45

5.3 Editing Patterns . 47

5.4 Acquiring Preconditions . 49

5.5 Semantic Generalization and the Concept Editor 52

viii

5.6 Acquiring Actions and the Predicate Editor 55

5.7 Meta-rules: Syntactic Generalization 57

5.8 Acquiring Lower-level Patterns . 59

5.9 Evaluation Tools . 60

5.10 Approximate Matching and Clausal Modifiers 62

5.11 Assessment . 65

6 ExDisco: Pattern Discovery 67

6.1 Motivation . 67

6.2 Outline of ExDisco . 69

6.3 Notes . 71

7 Methodology 74

7.1 Pre-processing: Name Normalization 74

7.2 Pre-processing: Syntactic Analysis 75

7.3 Generalization and Concept Classes 78

7.4 Indexing . 79

7.5 Pattern Ranking . 80

7.6 Re-computation of Document Relevance 80

7.7 Discovering Actions . 82

8 Experimental Results 84

8.1 Qualitative Evaluation . 86

8.1.1 Management Succession . 86

8.1.2 Mergers and Acquisitions . 90

8.1.3 Corporate Lawsuits . 91

ix

8.1.4 Natural Disasters . 92

8.2 Text Filtering . 93

8.3 Event Extraction . 95

8.4 Caveats: Management Succession 99

9 Discussion 101

9.1 Utility Analysis . 101

9.2 Analysis: Management Succession 105

9.2.1 Errors of Commission . 106

9.2.2 Errors of Omission . 107

9.3 Research Problems . 110

9.3.1 Variation across Scenarios 111

9.3.2 Convergence . 112

9.3.3 Syntactic Information . 113

9.3.4 Person-in-the-Loop . 114

9.3.5 Putting It All Together . 115

9.4 A Formal Framework . 115

9.4.1 Co-Training . 115

9.4.2 Duality between Rules and Instances 116

9.5 Conclusion . 118

Appendices 119

Bibliography 125

x

List of Figures

4.1 Proteus system architecture . 23

5.1 PET components . 40

5.2 Main Document Browser, with NE Results 42

5.3 ST Results . 43

5.4 Succession text and extracted record 48

5.5 A manually coded scenario pattern 49

5.6 Initial analysis . 50

5.7 Concept Editor . 52

5.8 Predicate Editor . 55

5.9 Final Pattern . 56

5.10 Initial Analysis of NP . 59

5.11 Evaluation Window . 61

5.12 Performance on MUC-7 ST task . 66

6.1 Intuition for Iterative Discovery . 69

6.2 Density of Pattern Distribution . 71

8.1 Management Succession . 94

xi

8.2 Mergers/Acquisitions . 96

9.1 Patterns from First and Last Iteration 102

9.2 Utility of Z1 against Q . 103

9.3 Utility across 80 iterations . 105

xii

List of Tables

1.1 Extraction: Sample table of Corporate Acquisitions 2

2.1 MUC History . 8

4.1 LF for the text: “Coca-Cola, Inc.” 30

4.2 A complex NP and corresponding entity LF 30

4.3 Event[1]: LF for “...operation has appointed GG as...president” . . 31

4.4 Event[2]: LF for “He succeeds...Talbot” 31

4.5 Event[3]: LF for “...Talbot, who resigned” 32

4.6 Event[2]: Modified . 32

4.7 Event[4]: Inferred Event . 33

8.1 Seed pattern set for “Management Succession” 86

8.2 Seed pattern set for “Mergers and Acquisitions” 90

8.3 Seed pattern set for “Corporate Lawsuits” 91

8.4 Seed pattern set for “Natural Disasters” 92

8.5 Performance of slot filling on “Management Succession” 97

xiii

List of Appendices

A Sample Source Document 119

B Sample NE Output 121

C Sample ST Output 123

xiv

Chapter 1

Introduction

The subject matter of this thesis is Information Extraction (or IE), a sub-area

of Natural Language Processing (NLP), a sub-area of Artificial Intelligence (AI).

Having thus fixed its coordinates on the scientific landscape, we give a 50-word

non-technical description of the objective of IE:

1. Process arbitrary free text, such as newspaper or magazine articles, tran-

scribed radio and TV broadcasts or web pages;

2. Find specific types of facts reported in the text, e.g., corporate mergers and

acquisitions; and

3. Reduce the discovered facts to a structured form, such as a table in a database

or a spreadsheet.

Here is an example of a text news segment:

Jack Rabbit, Inc. is the hottest new item on the market.

Amid the sudden bidding frenzy for the Pasadena-based

1

maker of pancake mix, Dell Corp., the computer giant,

has announced yesterday a bid of US$1.2 billion in its

surprise attempt to acquire the booming startup.

This text might be converted by an IE system into a record, as in table 1.1, of

“Corporate Acquisitions.”

Buyer Item Price Date reported-by article-link ...

Dell Jack Rabbit $1.2B 6/2/2000 Reuters link to source ...

...

Table 1.1: Extraction: Sample table of Corporate Acquisitions

Each record in the table can have a link back to the originating document. The

exact place in the document where the event is reported may be highlighted for

convenient access.

The benefits of transforming unstructured original text into structured form—

moving from “textual” to “factual”—are many.

One benefit is ease of manipulation: on plain text the only operation one can

perform is keyword search. By contrast, a wide range of operations apply to tables.

Given, as above, a table of “All Corporate Purchases” (ever reported in any of

one’s text sources) the user may issue complex queries, e.g. (as with any table

or spreadsheet), to browse the facts in the table, to sort and search the records

alphabetically by company, by date of the sale, by the net amount of transaction;

compute totals, averages, maxima, etc.

The most important benefit of this conversion is that the tables form a semantic

index into the text collection. That is an index by meaning, rather than index by

2

keywords only, which is how most collections have been organized to date. Such a

semantic index is a way to impose order on the chaos that is the universe of textual

information, and IE technology is a way of imposing such order automatically.

IE technology is the result of government-sponsored research over the last 12

years, cf. chapter 2, in its (the government’s) initiative to provide automatic tools

to news analysts in government agencies who must manually sift through vast

collections of textual information for specific facts.

1.1 Central Issues and Concepts

The task of Information Extraction is the focused search for “meaning” in free

natural language text1. In the context of IE, “meaning” is understood in terms of

facts, formally described as a fixed set of semantic objects—entities, relationships

among entities, and events in which entities participate. The semantic objects

belong to a small number of types, all having fixed regular structure, within a fixed

and closely circumscribed subject domain. This regularity of structure allows the

objects to be stored in a relational database.

Another consequence of the regularity of structure in the result of IE is that

it makes it possible to establish a notion of a “correct answer”. By comparing

the system’s result against the correct answer, the performance of the system may

be easily evaluated. At the very least this evaluation is more direct than in other

areas of NLP, such as Machine Translation or Text Summarization. DARPA has

conducted several competitive evaluations, called the Message Understanding Con-

ferences (MUCs), cf. chapter 2. The measures of performance used in the MUCs are
1The goals of and motivation for IE are discussed in, e.g., [42, 39, 38].

3

similar to those used in evaluating Information Retrieval, i.e., the score measures

recall and precision of extracted database records and fields.

In this thesis, we use the nomenclature accepted in current IE literature; the

term subject domain denotes a class of textual documents to be processed, e.g.,

“business news” or “medical reports”, and scenario denotes the specific topic of

interest within the domain, i.e., the set of facts to be extracted. An example of

a scenario is “Management Succession,” the topic of MUC-6 (the Sixth Message

Understanding Conference); in this scenario the system seeks events in which high-

level corporate executives left their posts or assumed new ones.

IE systems today are commonly based on pattern matching and partial syn-

tactic analysis.2 Patterns consist of regular expressions (RE) and their associated

mappings from syntactic to logical form. The patterns are stored in a pattern base,

one of the knowledge bases (KBs) used by the IE system.

Two principal factors are recognized as obstacles in the way of widespread use

of Information Extraction today—portability and performance.

• Portability: The user needs to be able to apply the IE system to diverse

domains and scenarios. Whenever the system is ported to a new scenario, new

knowledge bases must be built. Tuning the knowledge bases is recognized to

be a time-consuming and expensive process.

• Performance: Zipf’s Law, a.k.a. the “long tail” syndrome, is a serious prob-

lem in IE, as in other areas of NLP. A large number of facts are covered by a

small number of frequently occurring patterns, while the remaining facts—the

tail of the distribution—are covered by many more rare patterns.
2As opposed to full parsing, [17].

4

To overcome these problems we need to give the IE system developer the ability to

quickly customize robust KBs for a new topic, i.e., KBs which have wide coverage

and high precision.

1.2 Objectives of the Study

In this work, we focus particular attention on the pattern base, as it is recognized to

be the most complex by far to customize. We address the customization problem

in two stages:

A. First, we introduce a set of tools for building patterns manually from examples.

To adapt the IE system to a new domain quickly, the user chooses a set

of example sentences, or candidates, from a training text, and specifies how

each candidate maps to a set of semantic objects (a.k.a. logical form). The

system then applies meta-rules to transform the candidate automatically into

a general set of patterns. This effectively shifts the portability bottleneck from

building patterns to finding good candidates.

B. Second, we propose a methodology for discovering good candidates automati-

cally from a large un-annotated corpus of text. The system is initially seeded

with a small set of patterns proposed by the user. An incremental learning

procedure identifies new patterns and concept classes on successive iterations.

The overall goal of this thesis is to present an integrated approach to the problem

of scenario-level customization. The proposed approach is embodied in an actual

IE system, which is used to test it and evaluate its viability.

5

Chapter 2 contains a brief review of prior work. The following chapter outlines

our overall approach to IE. Chapters 4, 5 focus on the details of, respectively, the

core IE system and the example-based acquisition tools. Chapters 6–7 present the

tools for automatic discovery of patterns. Chapter 8 covers experimental results of

discovery, and chapter 9 discusses research problems which remain to be resolved.

6

Chapter 2

Prior Work

2.1 Information Extraction

For the purposes of our discussion, we shall fix the origin of the time-line at the

first so-called Message Understanding Conference (or Competition), MUC-1, held

in 1987.

This is not to suggest that there was no work related to IE in the pre-historic

times. [24] provides an early indication of the potential importance of extracting

relations from text and [47] applies the same ideas to medical texts. However,

the field saw a particular surge of activity as the result of the government-funded

MUCs.

The MUCs, [36, 37, 38, 39, 40], were sponsored by the government, at first by

the Navy and later by DARPA, with the explicit objective of stimulating research

in Information Extraction. A total of seven MUCs have taken place to date, each

MUC focusing on a particular textual domain and topic (scenario), cf. table 2.1.

Each participant built an IE system for the given task. To each participant the

7

MUC # Year Topic

1 1987 Messages about Naval Operations

2 1989

3 1991 Terrorism in Latin America

4 1992 (from newspaper and radio broadcasts)

5 1993 Corporate Joint Ventures and Microelectronics

6 1995 Negotiation of Labor Disputes

and Corporate Management Succession

7 1998 Airplane Crashes

and Rocket/Missile Launches

Table 2.1: MUC History

sponsors distributed the following materials:

1. Training data, in the form of source documents and “correct” answer keys,

prepared by human annotators.

2. A MUC scoring tool which compares the responses produced by the system

with the correct answers produced by human annotators.

3. Test data—a corpus of documents, which the developers were to keep hid-

den. The test documents were distributed one week in advance of the final

submission of results. The sponsors prepared the correct answer keys for the

test corpus, but withheld them until after the competition.

The present study builds upon NYU’s Information Extraction system called

Proteus, described in MUC literature, e.g., [21, 22, 17]. In chapter 8, where we

8

describe our experiments, we will make heavy reference to the two MUC-6 corpora:

the 100 documents called the MUC-6 “Formal Training” document set, and the 100-

document MUC-6 “Formal Test” corpus. These corpora—the documents together

with the corresponding annotations, or answer keys,—were distributed in 1995 in

preparation for (Training) and as part of (Test) the MUC-6 competition.

These, and other MUC corpora, are valuable resources, since they were difficult

and expensive to produce, requiring domain and linguistic expertise and extensive

human labor, for construction and validation. In all of our research, we are keeping

the Test corpora strictly hidden, i.e. not revealed to system developers, and used

sparingly for benchmarking.

Initially, porting the IE systems to new domains required heavy manual inter-

vention. As the field evolved, emphasis shifted explicitly toward rapid development

of systems. In MUC-6 and 7, the participants were given four weeks from the time

of announcement of topic and release of training data to the time of distribution

of test data and formal evaluation. That is a short time, as compared with six to

nine months allowed on the earlier evaluations.

Initially, most IE systems relied heavily on parsing. With the clever realization

that a complete parse of a sentence may not be at all necessary to find the event

described in the sentence, the field saw a general shift toward shallow, partial

parsing by means of finite-state pattern matching. In fact, in its quest for a global

parse, a full parser may not be able to correctly identify the event and its arguments

at all. Parsing ceased to be the prevailing enabling technology, [17, 2].

Over time, the tasks grew more complex. As the understanding of the underlying

problems deepened, the overall IE problem was stratified into several sub-problems

9

or tasks. The participants were judged on each task separately, which led to “spe-

cialization”, where sites chose to compete in some tasks and not others. Today at

least five IE tasks are recognized as independent, complex problems:

1. Named Entity (NE): find and categorize (certain classes of) proper names

appearing in text.

2. Template Element (TE): find all entities of specified types, (whether named

or not), and identify certain immediate features of the entity—e.g., for a per-

son, whether it is a civilian or a military official; for an organization, whether

it’s a commercial entity or a government agency.

3. Co-reference (CO): find and link together (co-index) all references to the

“same” entity in a given text.

4. Template Relation (TR): find instances of broader relations among entities,

such as the “employment” relation between persons and companies, or the

“parent/subsidiary relation” between companies.

5. Scenario Template (ST), the top-level IE task: find instances of events

or facts of specified types; events are complex relations with multiple ar-

guments, such as a rocket launch, relating the particular rocket, with the

date/time/location of launch, with the launching entity, with the cargo car-

ried aboard, with the outcome of the launch—success or failure.

In this thesis, we center almost exclusively on the top-level task, ST. Note that in

order to perform well on ST the system must be able to perform all the lower-level

tasks. On the other hand, for optimal performance on a higher-level task, optimal

10

performance on lower-level tasks may not be necessary: i.e., to find all events (ST)

one need not have to find all proper names (NE) in text, just those names that

participate in the events that are sought. NE will play an important role in chapter

6; the remaining tasks are outside the scope of this study.

2.2 Other Flavors of IE

In this thesis we focus on extracting facts from what is sometimes termed un-

structured text. This is contrasted with extraction from semi-structured or struc-

tured text, which contains heavy mark-up, in the form of SGML/HTML/XML/etc.

tags, [49].

This is a somewhat different problem from ours, in that it studies different do-

mains and different types of relations from the ones we are interested in. Examples

of these are job and apartment advertisements as they appear in classified sections

of newspapers. Such passages are typified by a rigid, predictable structure, and

commonly contain only one extractable item per passage. By contrast, normal

news articles have no formal structural cues, and in general may contain multiple

instances of events which we are trying to extract.

2.3 Learning Methods

This section presents a taxonomy of related methods for learning patterns for IE. We

observe a trend away from manual construction of patterns and toward automatic

and unsupervised techniques.

11

2.3.1 Semi-automatic Methods

Some prior systems can be classed as semi-automatic, as they require interaction

between the user and the system. In [55] we presented PET, some of the interactive

tools described in detail in chapter 5 for generalization from examples to extraction

patterns. The University of Massachusetts system, AutoSlog, [30, 44] uses a corpus

annotated with extraction templates for inducing a “concept dictionary”—the pat-

tern base. AutoSlog requires a human checker to weed out undesirable patterns.

Similarly to PET, these approaches exhibit a person-in-the-loop flavor. We should

also place in this category [10], which proposes a comprehensive environment for

building IE systems, by integrating iterative user filtering of results from an auto-

matic pattern learning algorithm. PET constitutes somewhat of an advance over

[30], in that it provides a richer interface, in particular one which allows the user

to control a concept hierarchy and use it for generalization, as well as providing for

automatic syntactic generalization.

2.3.2 Automatic Methods

[13, 34] have focused on methods for automatically converting a corpus annotated

with extraction examples into extraction patterns. [34, 14] report on experiments

with hidden Markov models. RAPIER, in [8, 9], builds symbolic rules for identify-

ing slot fillers using Inductive Logic Programming (ILP). The shortcoming of these

approaches is that they do not reduce the burden of finding the examples to anno-

tate. They shift the portability bottleneck from the problem of building patterns to

that of finding good candidates, while the system needs relatively large amounts of

annotated training data, even for relatively simple extraction tasks. For example,

12

the automated training of the University of Massachusetts system [13] performed

well when trained on the vast MUC-4 corpus (1500 articles), but suffered a sub-

stantial drop in performance on MUC-6 training (100 articles). One reason for

the need for large training corpora is that most such systems learn template-filling

rules stated in terms of individual lexical items, although recent work from NTT

[48] describes a system capable of specializing and generalizing rules stated in terms

of a pre-existing hierarchy of word classes.

2.3.3 Active Learning

Automatic learning from an annotated corpus can quickly pick up the most common

patterns, but requires a large corpus to achieve good coverage of the less frequent

patterns. Because of the typically skewed distribution of patterns in a corpus—with

a few patterns appearing frequently, followed by a long tail of rare patterns,—the

user who undertakes sequential annotation of examples for automatic learning finds

him/herself annotating the same examples over and over again. Active learning

methods try to cut down the number of examples the user must annotate by se-

lecting suitable candidates. [49, 53] report some gains in learning efficiency by

selecting for annotation those examples which match patterns which are similar to

good patterns, or examples which match patterns about which there is considerable

uncertainty (patterns supported by few examples).

2.3.4 Learning from Un-annotated Corpora.

The DIPRE system [7], and the Snowball system [1], modeled after the DIPRE

algorithm, use bootstrapping to find patterns starting with only a small set of

13

examples and with no pre-annotated data. The process is seeded with a set of

tuples in some given (binary) relation, e.g., book/author and organization/location-

of-headquarters. The algorithm then searches a large corpus for patterns in which

one of these tuples appears. Given these patterns, it can then find additional exam-

ples which are added to the seed, and the process is then repeated. This approach

takes advantage of facts or events which are stated repeatedly and in different forms

in a large corpus, such as the web. One limitation of the reported approach is that

the patterns use only surface information. A more inherent limitation is that the

scheme for ranking tuple relevance relies on the fact that the relation is functional.

These publications in particular, and others focusing on learning from un-

annotated corpora constitute the prior work which most closely relates to our study.

[11] iteratively trains two weak, mutually redundant and independently sufficient

classifiers for name classification. [5, 35] bootstrap from unclassified web pages

to find home pages of university professors and courses. [51] and [59] are among

the earlier pioneers of the bootstrapping approach; this work is of particular sim-

plicity and lucidity. [51] shows how bootstrapping can effectively train a “concept

spotter”, a classifier for proper names or noun phrases, by learning patterns stated

in terms of short-range lexical items. [59] uses bootstrapping for word-sense dis-

ambiguation; though it’s a somewhat different problem from ours, the ideas have

important similarities—which attest to the generality and strength of the overall

principles that unify all this research. [45] proposes automatic methods for filling

slots in event templates, their task being closest to ours; a related publication, [46]

finds word classes relevant to a scenario and patterns for finding these word classes.

In [45] all possible patterns (a word and its immediate syntactic context) are

14

generated for a collection containing both relevant and irrelevant documents. Pat-

terns are then ranked based on their frequency in the relevant vs. the non-relevant

parts of the collection, preferring patterns which occur more often in the relevant

documents. The top-ranked patterns turn out to be effective extraction patterns

for the task. In that respect this work is quite closely related to ours (our formula

for computation of patterns scores is based on the formula presented in this paper).

However, Riloff’s work differs from ours in several crucial respects.

1. First, while AutoSlog-TS is built on the observation that “domain-specific ex-

pressions will appear substantially more often in relevant texts than irrelevant

texts”, it does not exploit the dual relationship between relevant documents

and good patterns. This forces its reliance on a pre-classified corpus, a con-

straint which is removed in our work.

2. Riloff’s systems do not attempt to recover entire events, after the fashion of

MUC’s highest-level scenario-template task. Rather the patterns produced by

these systems identify NPs that fill individual slots, without specifying how

these slots may be combined at a later stage into complete event templates.

Our work focuses on directly discovering event-level, multi-slot relational pat-

terns.

3. Riloff’s approach either relies on a set of documents with relevance judge-

ments, [45], or utilizes an un-classified corpus containing a very high pro-

portion of relevant documents, [46]. By contrast, our procedure requires no

relevance judgements, and works on the assumption that the corpus is bal-

anced and the proportion of relevant documents is small.

15

Classifying documents by hand, although admittedly easier than tagging event in-

stances in text for automatic training, is still a formidable task. When we prepared

the test corpus, it took 5 hours to mark 150 short documents.

16

Chapter 3

Overview of the IE System

Our IE system can be logically divided into three phases:

I. Proteus: a back-end core IE engine. The core engine operates by regular

expression (RE) pattern matching. It draws on attendant knowledge bases

(KBs) of varying degrees of domain-specificity.

II. PET: a GUI front end to the core IE engine. PET enables the user to modify

the knowledge bases to tune the system to a new domain and scenario.

III. ExDisco: a suite of auxiliary tools, to aid the user in the otherwise highly

laborious process of tuning the knowledge bases. We are focusing on automatic

techniques for creating the knowledge bases, without manually constructed

training corpora.

Phase I is an existing, self-contained lower-level component, implemented by

Prof. Ralph Grishman at NYU for participation in MUC competitions, details

in [19, 17]. Phases II and III provide higher-level functionality to the overall IE

17

system, and form the substance of this thesis. We developed Phase II to address

the problem of customization. Our experience with the interactive tools exposed

the need for automatic corpus analysis, to provide a comprehensive approach.

These components are listed chronologically, in the order of their emergence.

Early IE researchers wrote Lisp or Prolog or Perl code to build monolithic extraction

systems. Then the KBs were factored out to make the systems portable to new

scenarios, and convenient graphical editors were developed for each KB. Then the

question arose: how does one populate the KBs—short of the inevitable manual

search through vast corpora for typical relevant passages, at best aided by standard

IR techniques to narrow down the search space?

This is the question this research aims to answer.

3.1 Proteus: the Core IE Engine

The system consists of a cascade of modules with their attendant knowledge bases.

Each module transforms the input text document. For a detailed discussion of the

system, see [17, 19].

There are four customizable knowledge bases in Proteus:

• Lexicon: contains scenario-specific terms

• Concept base: groups terms in a hierarchy of classes

• Predicate base: describes the logical structure of events to be extracted

• Pattern base: contains RE patterns that fire on events in text

18

Generally, the bases contain a domain-independent and a domain-specific com-

ponent. We have undertaken extensive research that seeks disciplined methodology

for customizing the domain- and scenario-specific components of the knowledge

bases.

Of these knowledge bases, by far the most complex is the pattern base. The

patterns perform the most complex IE function: mapping from the syntactic do-

main to the semantic. Therefore, most of the following discussion focuses on the

problems associated with discovering, building and generalizing patterns. We deem

this the top-level task—other knowledge bases and problems associated with cus-

tomizing them are considered insofar as they interrelate with the problem of pattern

customization.

3.2 PET: Interactive Customization

Given a functioning core IE engine, the problem of customization becomes central:

the user needs the ability to adapt the system to diverse scenarios. Customizing

the knowledge bases manually is time-consuming and requires considerable IE ex-

pertise and familiarity with the workings of the system. To alleviate the expertise

bottleneck, we have implemented Proteus Phase II, described in [55, 56], a suite of

knowledge-base editors and document/annotation browsers.

PET provides tools for the user to build patterns from examples. To customize

the pattern base to a new domain quickly, the user chooses a set of example sen-

tences, candidates, in a training text, and for each candidate specifies the logical

form that it induces. The system then applies meta-rules to transform the candidate

automatically into a general set of patterns.

19

PET allows the user (i.e. scenario developer) to start with candidates in text

which contain events of interest, the candidates, and generalize them into patterns.

However, the user is ultimately responsible for finding all the candidates, which

usually amounts to searching through example sentences in a very large training

corpus. This search is performed manually, at best aided by keyword-based queries

to narrow down the search space. Should the user fail to provide an example of

a particular class of syntactic/semantic construction, the system has no hope of

recovering the corresponding events. Our experience has shown that

(1) the process of discovering candidates is highly expensive, and

(2) gaps in patterns directly translate into gaps in coverage.

In effect, PET thus shifts the portability bottleneck from building patterns to

finding examples. How can the system help automate the process of discovering

good examples?

3.3 ExDisco: Automatic Discovery of Patterns

Our experiments with automatic pattern discovery are presented in [57, 58, 23].

The system aims to find examples of all common linguistic constructs relevant

to a scenario. This is not a simple matter of counting, however, since we are

(typically) not provided in advance with a sub-corpus of relevant passages—these

must be found as part of the discovery process. The difficulty is that one of the

best indications of the relevance of the passages is precisely the presence of these

constructs. Because of this circularity, we introduce a procedure that acquires the

constructs and passages in tandem.

20

It is important to observe that the pattern base and the concept base together

serve to define the set of constructs (phrases or clauses) that the system will extract.

We are seeking paraphrases for a certain type of event, and these paraphrases

can occur at the level of single words as well as at the level of complex syntactic

constructions, such as clauses. Also, there is a certain tradeoff between patterns

and concepts. For example, if two patterns differ by a single constituent, they can

be unified simply by introducing a new concept class that unifies the classes of the

two divergent constituents. Thus an effective pattern discovery procedure must

take into account concept variation.

In the following three chapters we describe each of these phases in turn: Proteus,

PET, and ExDisco.

21

Chapter 4

Proteus: Core System

4.1 Architecture

A diagram of our IE system [17, 55, 56] is shown in figure 4.1. Logically, the system

is a pipeline of modules: each module draws on attendant KBs, processes its input,

and passes output to the next module.

Physically, the modules operate on the internally stored document text by

adding annotations to it, [18]. Annotations are structures attached to spans of

tokens—segments of text—which contain syntactic and semantic information relat-

ing to these spans, for use in the subsequent phases of processing.

Each module can be viewed as solving a (potentially independent) sub-problem,

in the overall quest for meaning that is IE, and indeed there is a considerable body

of research dedicated to each individual sub-problem. The problems become harder

as we move down the pipeline, and each stage has the potential to contribute (and in

practice does contribute) errors to the overall final result. Dealing with the problems

which each of the modules encounters is beyond the scope of this thesis. Here we

22

Lexical Analysis

Name Recognition

Noun & Verb Groups

Events

Reference Resolution

Discourse Inference

Output Generation

Lexicon

Pattern Base

Template Format

Semantic Concept
Hierarchy

Inference
Rules

Noun Phrases

Figure 4.1: Proteus system architecture

focus almost exclusively on the problem of building and finding high-level scenario

patterns; thus we implicitly consider all other problems as “solved”—though in

reality they are far from it.

4.1.1 Lexical Analysis

The lexical analyzer is responsible for

• breaking a document into sentences,

• breaking sentences into tokens,

• looking up the tokens in dictionaries, and

• (optionally) assigning syntactic categories, such as part-of-speech tags, to the

23

tokens.

This module draws on a set of on-line dictionaries and heuristic rules.

An important factor in IE is what type of text we are processing. We observe

that text types fall on a continuum along the dimension which corresponds to, for

lack of a better term, its “cosmetic” layout; the text may:

• be heavily marked up with structural information by SGML or XML, e.g.,

explicit paragraph and sentence boundaries, name types, etc. This is typically

the case with Web pages, or electronic newspaper articles;

• be plain, with minimal or no mark up, but contain correct, dependable punc-

tuation and capitalization. This can be, e.g., printed matter digitized by OCR

software;

• have minimal or no punctuation and case differentiation. This includes text

transcribed by speech recognition software, such as radio or TV news broad-

casts, or free dialog.

We can use the term “cosmetic” because to a human reader the presence or the

absence of mark-up has marginal effect on the text’s understandability. Human

language has sufficient redundancy built into it to enable the human reader to

extract meaning from it even in the absence of punctuation, prosody, or other

extra-lexical means. From a computational point of view, though, the cosmetic can

make all the difference.

Texts used in the MUCs fall into the first category. A sample SGML document

is shown in appendix A. This document contains a (paraphrased) text segment

from the MUC-6 development corpus, which was drawn from a collection of Wall

24

Street Journal articles. Clearly, the less “cosmetic” information is available in the

text, the harder the job of the IE engine, and in particular of the lexical analyzer.

The sentence breaker is a non-trivial problem, as, in general, one cannot sim-

ply assume that the sentence ends at a period or an exclamation point. Even if

capitalization is present, there are acronyms and abbreviations which can easily

confuse a naive algorithm. On the other hand, sentence identification may not be

strictly necessary, since, as in the case of Proteus, the system does not attempt to

construct a global parse of a sentence, and in principle the entire document could

be processed at once.

Lexical analysis attaches to each token a reading, or a list of alternative readings,

in case the token is syntactically ambiguous. A reading contains a list of features

and their values (e.g., “syntactic category = Noun”). This module also attempts

to find some idiomatic expressions.

In general, deciding on the appropriate reading for a token is not a simple matter

of looking up in a list. The Proteus lexical analyzer incorporates a statistical part-

of-speech tagger, which ranks readings for each token by statistical likelihood.

4.1.2 Name Recognition

The name recognition module is responsible for identifying proper names in the

text, and attaching semantic categories to them. Proper names can fall into many

categories; many objects in discourse can be named:

• persons; e.g.,

– “George Washington”, “George”, “Washington”, “Calvin Klein”,

25

• geographic locations or geo-political entities:

– “Washington, D.C.”, “Washington State”, “Washington”

• companies and organizations:

– “IBM”, “Sony, Inc.”, “Calvin Klein & Co.”, “Calvin Klein”

• products and artifacts:

– “DC-10”, “SCUD”, “Barbie”, “Barney” (the Purple Dinosaur)

• works of art:

– “War and Peace”, “Mona Lisa”, “Gone with the Wind”

• other groups, such as sports teams, musical bands, orchestras, etc.:

– “the Boston Philharmonic”, “the Boston RedSox”, “Boston”, “Washing-

ton State”

• major events, political, economic, meteorological, etc:

– “Korean War”, “Million Man March”, “Cuban Missile Crisis”, “The

Great Depression”, “The Dark Ages”, “The Ice Age”, “El Niño”, “Hur-

ricane George”

• laws, regulations, legal cases:

– “the Equal Opportunity Act”, “Row v. Wade”

For some categories, simple local contextual cues may available, such as:

• capitalization;

26

• special markers, such as personal titles (“Mrs.”, “Esq.”), and company desig-

nators (“Inc.”, “Ltd.”);

• specialized closed lists, e.g., a list of common personal first names, a gazetteer,

a list of company names;

• patterns which encode heuristic rules; e.g., the rule

Location-Name ⇐= Direction-Phrase + Unknown-Name

might be used to categorize the phrase “Western Atlantis” as a location, with-

out prior knowledge of a place called “Atlantis.”

However, the general problem is quite complex, and one must rely on longer-range

surface cues or deeper semantic information to find and categorize names. One

problem is resolution of multiple ambiguities, such as those appearing in the ex-

amples above. A related problem is aliasing, since typically a name will appear

throughout a document multiple times and in variant forms, with shorter versions

or acronyms replacing the full form.

Name recognition is a heavily-researched topic, with the some systems today

reaching 96% accuracy in narrow domains. For example, [6] describes a statistical

method for building a NE recognizer automatically. It uses Maximum Entropy

estimation to compute probabilities of boundaries and classifications of named en-

tities, though it requires training data pre-tagged by human annotators. The NE

recognizer we use in Proteus is rule-based, and we will revisit this component in

greater detail in later sections which deal with automatic pattern discovery.

27

4.1.3 Higher-Level Patterns

The next module uses primarily syntactic patterns to identify small syntactic units,

such as basic noun groups (NG), which are nouns with their left modifiers, and verb

chains or verb groups (VG), which consist of a head verb preceded by modals or

adverbials. When a pattern identifies a NG or VG, the system marks the group with

syntactic information, such identifying the head word of the group. In case of an

NG, Proteus also marks it as a basic noun phrase (NP), creates the corresponding

semantic structure, its entity (see below), and links the NP to the entity.

The next phase—incrementally building on information gathered at the earlier

phases—marks larger, higher-order NPs. We distinguish basic NGs from NPs which

can contain right modifiers, such as prepositional phrases (PPs). Typically, prepo-

sitional phrase attachment is difficult to resolve locally, so Proteus does not attach

PPs unless strong local evidence is present. This evidence is always semantic in

nature, and must be built in as scenario- or domain-specific patterns. An example

of a domain-specific NP pattern would be one which is used to capture NPs like

“the president of the company”.

There are some cases where PPs can be attached in a domain-independent

manner, as in the so-called “light” nouns denoting groups of objects. Examples

of these are “a team of astronauts”, or “group of companies”. In these cases,

Proteus contains patterns to attach the PP and set the class of the resulting LF to

be the head noun of the PP. That is, we want the entity corresponding to “a team

of astronauts” to behave like “astronauts” rather than like “team”, so subsequent

patterns seeking constituents of semantic type astronaut would have a chance to

match the entire NP. Another way to think about these light nouns is that they

28

behave like quantifiers, e.g., “dozens of astronauts”, or “some of the astronauts”.

The next set of patterns builds more complex NPs, based again on semantic

information. These NPs may involve appositions, conjunctions, or subordinate

clauses. Example of such higher-level NPs would be “Intel, the computer chip

manufacturer”, or “John Smith, 40 years old, CTO and vice president for domestic

gadgets”.

The highest-level pattern phase identifies scenario-specific clauses and nomina-

lizations— the places in text where the sought events or relationships occur. This

phase is the focus of this study and is discussed in greater detail in section 4.2.

In Proteus, these four modules operate by matching patterns of successively

increasing complexity against the input. Each pattern consists of two parts:

• a trigger or precondition, which matches a certain sequence of surface sentence

constituents; and

• an action which is performed when the precondition matches, and prescribes

the operations needed to map the surface sentence fragments into semantic

objects.

The actions perform operations on the logical form representation (LF) of the pro-

cessed segments of the discourse. Thus, after these phases are complete, the dis-

course is represented internally as a sequence of LFs corresponding to the entities,

relationships and events encountered so far in the analysis.

Each LF is a predicate with arguments; here we represent LFs as objects with

named slots (see example in table 4.1). One distinguished slot in each LF, called

“Class”, determines the number and the types of the remaining slots that the object

29

Slot Value

class C-Company

name Coca-Cola, Inc.

location . . .

.

Table 4.1: LF for the text: “Coca-Cola, Inc.”

may contain. E.g., an entity of class “Company” usually has a slot called “Name”.

It can also have a slot called “Location” which points to an entity describing a

geo-political entity, thereby establishing a relation between the location entity and

the matrix company entity. For example, the noun phase from the document in

Appendix A,

... Information Resources Inc.’s London-based European

Information Services operation ...

would induce the LF in table 4.2. Note that once a pattern has identified that this

Slot Value

class C-Company

name European Information Services

location entity =⇒ <London>

parent entity =⇒ <Information Resources Inc.>

Table 4.2: A complex NP and corresponding entity LF

entire text segment forms a single noun group and the LF is built, the segment is

annotated with a link to the LF, and subsequent access to the text will return the

30

information stored in the LF, with (generally) no further reference to the originating

text.

Events are more complex kinds of relations, usually syntactically headed by a

verb and usually having several entities as operands. For example, the first three

clauses of the demonstration text would induce the following events (the rest of the

text produces no event LFs):

Slot Value

class Start-Job

company entity =⇒ <Euro.Info.Serv.>

position entity =⇒ <President>

person entity =⇒ <Garrick>

Table 4.3: Event[1]: LF for “...operation has appointed GG as...president”

Slot Value

class Succeed

successor entity =⇒ <He>

predecessor entity =⇒ <Talbot>

Table 4.4: Event[2]: LF for “He succeeds...Talbot”

4.1.4 Logical Phases

The subsequent three phases operate on the logical forms built in the preceding

pattern-matching phases. Reference resolution merges co-referring expressions. It

links anaphoric pronouns to their antecedents, and resolves multiple mentions of the

same event together. The basic mechanism behind reference resolution in Proteus

31

Slot Value

class Leave-Job

company entity =⇒ <?>

position entity =⇒ <?>

person entity =⇒ <Talbot>

Table 4.5: Event[3]: LF for “...Talbot, who resigned”

is unification. Two objects are unified if their slots are compatible, where compat-

ibility is determined by semantic type. E.g., the anaphoric 3rd person pronoun in

event 2 would be resolved to the the entity corresponding to the name “Garrick”,

based on semantic compatibility and on the relative order of the LFs. Thus after

reference resolution Event 2 would become as in table 4.6.

Slot Value

class Succeed

successor entity =⇒ <Garrick>

predecessor entity =⇒ <Talbot>

Table 4.6: Event[2]: Modified

The Discourse analysis module uses higher-level inference rules to build or mod-

ify event structures, where the information needed to extract a single complex fact

is spread across several clauses. E.g., Proteus contains a rule of the form:

startJob(P1, C, J) ∧ succeed(P1, P2) =⇒ leaveJob(P2, C, J)

The predicates in the rules are typed; Pi are variables of type person, C is of type

company, and J is of type job-post. This rule would combine events 1 and 2 to infer

32

event 4 as in table 4.7, which would then unify with the underspecified event 3.

Strictly speaking, the inference rules constitute yet another scenario-specific

component, which, however, is not yet customizable through the PET interface.

For the moment, they are built into the system in the form of Lisp code. We

believe, however, that if the structure of the output is defined appropriately (viz.

it is designed to correspond closely to events as they appear at the surface sentence

level), the need for inference can be minimized. Where the output templates do not

correspond closely to the surface structure, we believe that the inference operations

can be successfully modeled through a straightforward command interpreter, by

means of commands stated in a relational algebra (e.g. SQL-like statements).

In the output generation phase, Proteus selects which of the resultant LFs are

to be output1, and formats them into the output structure specified by the user,

e.g., into a database table.

Slot Value

class Leave-Job

company entity =⇒ <Euro.Info.Serv.>

position entity =⇒ <President>

person entity =⇒ <Talbot>

Table 4.7: Event[4]: Inferred Event

A thorough example of extraction which illustrates the operation of the various

phases of Proteus is given in [19].
1Some LFs are internal, such as Event 2. They are used for intermediate inference, and are

not presented on output. The form of the output is given by the task specifications.

33

4.2 Organization of the Pattern Base

Before we describe our example-based strategy for pattern building, we examine

the organization of the pattern base in more detail. The patterns are arranged in

layers according to their range of applicability:

1. Domain-independent: this layer contains the most general patterns. E.g., the

patterns for name recognition (for people, organizations, and locations, as

well as temporal and numeric expressions, currencies, etc.), and the purely

syntactic patterns for noun and verb groups. These patterns are useful in a

wide range of tasks.

2. Domain-specific: the next layer contains domain-specific patterns, which are

useful across a narrower range of scenarios, but still have considerable gener-

ality. These include domain-specific name patterns, such as those of certain

types of artifacts, as well as patterns for noun phrases which express relation-

ships among entities, such as those between persons and organizations.

3. Scenario-specific: the last layer contains scenario-specific patterns, having the

narrowest utility, such as the clausal patterns that capture relevant events.

This stratification reflects also the relative “persistence” of the patterns. The

patterns at the lowest level have the widest applicability. They are built in as a core

component of the system, because these are not expected to change when the system

is ported to a new domain. The mid-range patterns, applicable in certain commonly

encountered domains, can be organized into domain-specific pattern libraries, which

can be plugged in as required by the task. For example, Proteus has a set of low-

level, domain-independent patterns for extracting entities, such as:

34

• organization,

• company,

• person,

• location;

For the domain of “business/economic news”, these entities are used to build a

library of patterns to capture domain-specific relations:

• person—organization,

• organization—location,

• parent—subsidiary organization.

The scenario-specific patterns must be built on a per-scenario basis. Because, in

moving to a new scenario, we expect the highest turn-over patterns at this level, we

invested greatest effort in making this step easier for the designers of IE systems.

Our first attempt to do so was PET, described in the following chapter.

4.3 Formal Evaluation

The Proteus core IE engine takes the original text as input and produces SGML

output. The original text usually already contains some form of SGML/XML mark-

up, e.g., to identify titles of articles, headlines, dates, paragraph and document

boundaries, etc. For the NE task, the result of extraction is a modified copy of the

original document in which the NE tags are inserted as additional SGML mark-up.

For the ST task, the output is a report file containing the extracted templates, in an

35

object-like format. Sample output files for these two tasks are shown in Appendix

B and C, respectively.

When correct answer keys are available, the system’s response can be matched

against them by the scoring program. This allows the user to evaluate the system’s

performance on the given document, by comparing the results against predefined

answer keys.

The measures used for IE evaluation are similar to those used for IR, i.e., recall

and precision. In IR, where the goal is to retrieve good quality documents from a

text collection, recall and precision are defined as follows, in terms of three values:

R =
C

C + M
(4.1)

and

P =
C

C + S
(4.2)

where C is the number of documents correctly retrieved, M is the number of missing

documents, which the system should have retrieved but did not, andS is the number

of spurious documents, those that it should not have retrieved, but did.

In IE the situation is a bit more complex, since we are measuring slots filled in

the semantic objects that the system found in text. Thus in the case of IE, there is

one more category of error: an object or a slot can be identified incorrectly, i.e., the

system should have indeed picked up some object from a given place in text, but it

picked up the wrong object. If we denote the number of incorrectly identified slots

or objects by I, the recall/precision formulas become:

R =
C

C + I + M

36

and

P =
C

C + I + S

Sometimes it is more convenient to measure performance with a single number; in

such cases F-measure is used, which is a weighted geometric mean of the two:

F =
(β + 1)RP

(β ∗R + P)

where β is a parameter controlling the relative importance of recall and precision

to the evaluator. In all our experiments, we use β = 1.

A complete evaluation requires answer keys. For the MUC-6 competition,

DARPA generated a set of answer keys for a training corpus and a test corpus,

each consisting of 100 articles from the Wall Street Journal (WSJ).

4.4 Problems in Scoring IE

We should note that the MUC evaluation is itself quite a complex conceptual and

algorithmic problem. In particular, it is much more complex than scoring recall and

precision for IR tasks. The additional complexity arises from the fact that a given

document is not simply relevant or irrelevant. A document may induce more than

one event and each event typically has several slots—and each slot leaves potential

room for error.

In general, the answer keys, and the system response, may contain more than

one event. The situation is complicated by two factors:

1. the events in the response may contain errors, in that some events may be

spurious and some slots may be filled incorrectly, and

37

2. the two sets of events form un-ordered sets.

To score the response against the answer key, the scorer must first align the two

sets of events, and then, to appear impartial, it must try its best to give the highest

possible score. At the same time, the lack of order is inherent to the situation,

because although the original text is linear, in general it is difficult to anchor a

given event at a particular segment of text, since an event may be pieced together

by means of complex inference from several partial cues or descriptions.

The search for an optimal alignment causes a serious problem. Even foregoing

the fact that it may require checking all possibilities, it causes a serious problem

of “deceptive scores”. In effect it is possible for one IE system (or one version of a

system), S1, to be “objectively” worse than another, S2, while the scorer assigns a

higher score to S1 than to S2.

This has gone down in MUC lore as the “Jesuit priest” phenomenon. In the

context of the MUC-3/4 topic, terrorism in Latin America, the developers of Proteus

also carefully engineered a second system (each participating site is allowed to

submit more than one system for evaluation) which religiously reported that “six

Jesuit priests were killed in El Salvador” for every document, disregarding the input.

At the formal evaluation, this rogue system received a higher score than some of

the competing systems, which actually tried to perform meaningful extraction.

Here is a simple example of how this can happen. Suppose the correct answer

contains a single event, e↑, and suppose also that S1 reports an event e↓, which

is basically wrong—but, say, some of the slots happen to be correctly filled. The

scorer will assign some credit to e↓ based on the fact that some event was found

and some slots were correctly filled.

38

Now, for the system to improve objectively, two things must happen: it must

learn

a. to discover the correct event e↑, and

b. to stop discovering the incorrect event e↓.

If S2 satisfies both a. and b.—i.e., e↑ replaces e↓ in the response—it will clearly

get a higher score than will S1. However, if only one of a. or b. takes effect, the

score for S2 can actually go down: in case of a. it will be penalized for a spurious

event (e↓), and in case of b. for a missing one (e↑).

Note that, in general, either only a. or b. will happen as an intermediate

state, during a normal development cycle, since, in general, two different system

components are responsible for finding e↑ and e↓, and these components are de-

bugged separately. So that, in general, it is not a simple matter of tweaking a

single component to find e↑ instead of e↓.

There have been several proposals on how this problem may be fixed or alle-

viated. It has been suggested that the scoring algorithms be extended with some

notion of relative importance of slots inside the events. So that events receive

points only if certain constraints on important slots are satisfied. The situation is

further complicated by the fact that recent evaluations included scoring of extents,

i.e., assignment of credit for identifying the precise spans of text which induce the

reported events.

Scoring for IE remains a topic for further research. Despite the problems de-

scribed here, these methods are the standard way of measuring quality in IE, and

we resort to them in our own evaluation, in chapter 8.

39

Chapter 5

PET: Example-Driven Acquisition

PET is a set of graphical tools for customizing knowledge bases for a new scenario.

Figure 5.1 shows the principal components of the toolkit and their interaction with

Lexicon Editor

Concept Editor

Template Editor

Evaluation

Lexicon

Pattern Base

Template Format

Semantic Concept
Hierarchy

CorpusPattern Editor

Document Browser

Figure 5.1: PET components

40

the KBs of the preceding chapter.

The modules of PET at present are organized into three principal groups, rep-

resented by the boxes laid out along the diagonal:

• Document Browser: for performing various IE operations on document texts;

• Knowledge Base Editors: for customizing the Proteus knowledge bases;

• Evaluation tools: for testing and applying the acquired KBs to a training

corpus.

We now introduce these tools in turn. Together they comprise a prototype of an

integrated graphical environment, intended to support the development cycle of

scenario-level customization. The tools are written in Common Lisp (Allegro); this

allows seamless integration with the core Proteus system, also written in Lisp. The

graphical package used was Garnet [15], developed at CMU.

The user begins the interaction by bringing up the PET control panel. From

the main panel the user can invoke the various components of PET, which sits “on

top of” Proteus, and in turn invokes its functions.

5.1 Document Browser

We start with the description of the Document Browser, since that is where the

development process typically begins—with an actual document to be analyzed.

This tool allows the user to:

• Select and browse documents from a training collection.

• Perform various IE tasks on the selected document.

41

Figure 5.2: Main Document Browser, with NE Results

• View the results of IE in graphical form.

Figure 5.2 shows the document window, containing the demonstration text from

Appendix A. We will use this as a pilot example in the present chapter to illustrate

PET’s functionality.

At present PET supports the following MUC tasks:

NE – Named Entity,

ST – Scenario Template.

42

Figure 5.3: ST Results

The output Proteus produces for the NE and ST tasks is rather opaque (cf. Appen-

dices B and C), and imposes a considerable processing load on the human reader.

The document browser presents the results in an intuitive graphical form.

The results of NE appear in figure 5.2, with named entities in the various cat-

egories color-coded: persons, locations, organizations, dates, currencies, etc. Addi-

tionally, un-named entities—general noun phrases—are shown in boldface. When

the user clicks on an entity in the text, the message panel at the bottom of the

main window displays the type of SGML annotation corresponding to the entity,

in standard MUC format.

43

Figure 5.3 shows the results of ST processing on the same document. Again,

the graph is intended as an aid to viewing the system output (Appendix C). The

reader can readily appreciate the reduction in cognitive load by comparing the two

representations. The results are shown as a graph in which each node corresponds

to a slot in an extracted object. The bottom panel shows the last-clicked object in

the MUC standard format—object name followed by its slots given as name-value

pairs. The last clicked node was the one labeled “president/European Information

Services.”

We should briefly mention a peculiarity of the output format used for MUC-6

output. In this scenario, the top-level output structure is the so-called “succes-

sion event”. According to MUC-6 task specifications, this structure is intended to

group together all transitions pertaining to a given post in a given company. Pro-

teus’s internal representation stores each transition event as a separate record in

a table of events. In relational terms, this simply means that Proteus’s transition

event table, containing the actual hiring/firing events, is not the final output form.

Rather, the output form is a particular view on this table. The unique key in the

internal table is the pair (company, post), and the output view has a field called

in and out, which contains a set of transition events matching a given key. In

effect, this organization of the MUC output format introduces an extra level in the

response graph.

The graph in the figure shows that the pilot document induced a single succes-

sion event in which one person left the office and another took over. This transition

is registered by having two elements in the in and out slot.

44

Slot values can be atoms, as, e.g., the slots called post and vacancy reason, or

they can themselves contain nested objects, as does the slot in and out. Initially,

the graph shows only the top-level nodes. The nodes at the deeper levels can be

exposed or hidden by clicking on the parent nodes.

The last clicked node is shown in blue; nodes that can be expanded further are

colored yellow, and nodes that cannot be expanded (“leaf” or atomic slots) are

white.

PET’s Document Browser includes a similar window, which allows the user to

view the answer keys—when such are available—in the same graphical form, simul-

taneously, while reviewing the system response. This is convenient for comparing

the system output against the answer keys.

Both types of graphs, the system response and the answer key, have links back

into the source document; clicking on a node in the graph highlights the corre-

sponding text segment(s) in the main document window.

The layout of the ST graphs can be rearranged by the user, by clicking and

dragging the nodes. As discussed in section 4.4, aligning the events in the system

response with those in the answer key is a non-trivial problem. This tool provides

aid to the user for visualizing possible alignments.

5.2 Knowledge Base Editors

Prior to MUC-6, the knowledge bases were coded in Lisp as part of the Proteus

system. The KBs were modular only insofar as they resided in separate files, but

there were no uniform convenient facilities for modifying the KBs “on the fly”.

Generally, for a modification to a KB to take effect, the corresponding segment of

45

Lisp code had to be explicitly evaluated, and in some cases, the entire system had

to be re-loaded.

With the advent of PET, we developed new file formats for storing the KBs

on disk, to facilitate dynamic modification of knowledge bases. The following KB

editors have been implemented to date:

• Lexicon Editor: Allows the user to build domain-specific dictionaries. These

dictionaries are used to supplement the COMLEX dictionary, which provides

the base English lexicon, [20, 31].

• Concept Editor: Lexical entries are grouped into a hierarchy of semantic

classes, similarly to, e.g., WordNet, [33]. Pattern elements can then refer

to these concept classes. The editor allows the user to organize classes in a

directed acyclic graph (DAG), and to examine and modify the domain-specific

hierarchy.

• Predicate Editor: Lets the user define predicates—the internal logical struc-

tures which are filled when patterns match. The editor also allows the user to

specify how the predicate is represented on the output, and how it interacts

with the pattern editor.

• Pattern Editor: The IE engine operates by applying sets of semantic pat-

terns to the text sentences. The pattern editor allows the system to acquire

the patterns from example sentences provided by the user. The user also

specifies—with help from the system—the structure which should result from

the example sentences. It also enables the user to control the order in which

patterns are applied and form groups of “competing” patterns.

46

As we mentioned earlier, the customization process is logically centered around

the pattern base. We now turn to a more in-depth customization example, which

will occasion a description of each of the KB editors.

5.3 Editing Patterns

The main objective of PET is to engage the user at the level of surface represen-

tations as much as possible, while hiding the internal operation of Proteus. When

adding patterns, it is possible for the user to restrict her/his input to

• providing examples of text which contain events of interest,

• describing the corresponding output structures (LFs) which the example text

should induce.

We will describe how the system uses this information to

• automatically build patterns to map the user-specified text into the user-

specified LF,

• generalize the newly created patterns to boost coverage; the generalization

happens on both the syntactic and the semantic levels.

Suppose the developer has found a salient text segment and intends to tune the

IE system to extract the information from it. Figure 5.4 shows a segment from the

pilot text, with the extracted event, in the form of a database record.

In the era of pre-PET Proteus, upon finding a candidate example, the developer

had to construct a pattern to capture the example and extract an event from it.

As we observed in chapter 4.1.3, the pattern consists of a trigger and an action. In

47

. . . Information Resources Inc.’s London-based European Information Ser-

vices operation has appointed George Garrick, 40 years old, as the new presi-

dent . . .

Field Value

Position president

Company European Information Services

Location London

Person George Garrick

Status In

Figure 5.4: Succession text and extracted record

this case, the trigger should match an active clause beginning with a noun phrase,

np, of type “company”, followed by a verb group (vg) of class “appoint”, followed

by a np of class “person”, etc. The action should contain instructions which specify

how to assemble the matched constituents into an event structure.

Figure 5.5 shows an excerpt from the pattern code. This code is intended to

instill dread and gloom in the aspiring IE developer; it should be apparent that

this method of development is time-consuming and error-prone.

Instead, PET employs a kind of interactive “bootstrapping”: it takes a new

example from the user, and applies to it the patterns that the system has acquired

so far. This typically produces a partial analysis and builds LFs for the analyzable

constituents of the example text. The user then specifies how these LFs, or their

sub-parts, combine to yield the LF for the entire example.

48

;;; For <company> appoints <person> <position>

(defineTrigger Appoint

"np(C-company)? vg(C-appoint) np(C-person)

to-be? np(c-post):

company=1.attributes, person=3.attributes,

position=5.attributes |

. . .

(defineAction Appoint (phrase-type)

(let ((person-at (binding ’person))

(company-entity (entity-bound ’company))

(person-entity (entity-bound ’person))

(position-entity (entity-bound ’position))

new-event)

;; if no company slot in position, use agent

. . .

Figure 5.5: A manually coded scenario pattern

5.4 Acquiring Preconditions

To illustrate the operation of PET, we first show how a user would use the system

to acquire a clausal pattern from the example in figure 5.4. Consider figure 5.6,

which shows the main window of the pattern editor.

The top window of the editor is the example window. It contains the text of

the original example—typed in by the user or pasted from the document browser.

When the user clicks the “Match” button, PET invokes Proteus to analyze the

example. The main point here is that the basic system, i.e., one that has not been

specialized for any particular scenario, will produce a partial analysis, by dint of

49

Figure 5.6: Initial analysis

the built-in patterns for named entities, and shallow syntactic patterns for noun

groups and verb groups.

Below the example window is the precondition (or trigger) window. It contains

the initial analysis, the precondition proposed by the system. This is the first

approximation to the precondition of the pattern that the user will ultimately

accept.

The initial analysis indicates that Proteus found six separate segments in the

sentence. The sentence begins with a long noun group, whose head is the lexical

50

item “operation”. (This is picked up by a complex noun group pattern, discussed

below in section 5.8.) Following that, Proteus finds a verb group, followed by

another NP, followed by a literal “as”, which cannot be analyzed as part of any

constituent, and so on. The corresponding parts between the two windows are color

coded, with NPs in blue, verb groups in yellow, literals in black, etc.

Proteus builds the underlying syntactic structures for each constituent identified

in the precondition window, as explained in section 4.1.3. When the user clicks on

a constituent, its structure is displayed in the form of a graph in the third window

of the pattern editor, the constituent window. If the constituent is a noun phrase,

Proteus builds the corresponding semantic structure as its logical form (LF), i.e.,

the corresponding entity, which is displayed together with the syntactic information.

In this case, the user clicked the first constituent, and the graph of its entity

shows its class as “Operation”, and the fills for the slots :names and :location.

Note that the value of the :location slot is a complete nested entity.

At this point, the system engages the user in an interaction, in which s/he can

operate on each constituent. The menu of operations includes generalizing the

constituent, applying regular expression operators such as optionality or closure,

removing it, adding user-defined pieces to the pattern, etc.

There is no one “correct” way to transform an example into a pattern; doing

so requires some basic linguistic awareness on the part of the user, as well as an

understanding of the subject domain. Typically the user needs to find an appro-

priate level of generalization for each NP or VG constituent, to maximize coverage

without jeopardizing precision.

51

Figure 5.7: Concept Editor

5.5 Semantic Generalization and the Concept Editor

Consider the first constituent in the precondition, np head(OPERATION). It would

probably serve our purpose best—the purpose being broader coverage for the pat-

tern— if the first noun phrase were generalized to include terms denoting different

types of businesses. The pattern should match any semantically similar noun phrase

in that position in the clause: “concern”, “outfit”, etc. To this end, PET/Proteus

allows the user to gather semantic concepts in an inheritance hierarchy, outlined

above in section 5.2. For example, s/he can gather all these and more lexemes under

the one semantic class, called C-Company. PET then allows the user to perform

52

semantic generalization on the individual constituents of the pattern’s precondition.

In the generalization process the user employs the concept hierarchy, which can

be viewed and modified through the Concept Editor, figure 5.7. The editor allows

nodes in the graph to be rearranged, items to be added, and modified.

The semantic hierarchy is scenario-specific. It is built upon a domain-independent

base, which includes some general concepts like persons, locations and companies.

Then for each specific scenario, the user adds items dynamically, either as relevant

terms are found in training corpora, or through a pair of auxiliary external tools

that provide a link to

• WordNet, the pre-existing domain-independent hierarchy, and

• tables of domain-specific word similarities, based on co-occurrence statistics,

[12].

The parent class of the node “Operation” (upper-right corner) is “C-Company”

and it includes many related terms. This class also includes unspecified types of

businesses identified only by a proper name—a name which was determined to refer

to a company by low-level name identification patterns. Such low-level patterns

create entities and set their class to “C-Company”.

Right-clicking on a constituent brings up a menu of operations. The user can

choose to generalize the class of the NP up the hierarchy one level at a time.

Again, the actual candidates for the classes are suggested by the user’s intuition,

by WordNet, or by co-occurrence statistics.

Likewise, the second constituent should be generalized to a class of all verbs

similar to “appoint”, such as “name”, “nominate”, and “hire”. The fifth NP should

53

be generalized to a semantic class that includes all corporate titles; in Proteus, this

class is called “C-Post”.

The literal ’as’ should be marked optional to match sentences like “John was

appointed president”.

Lastly, the final period, which appeared as a literal constituent, should be re-

moved, since otherwise we would have the unnatural restriction that this clause

match only at the end of a sentence.

These operations result in the following pre-condition:

np-head(C-COMPANY) vg(C-APPOINT) np-head(C-PERSON) ’as’?

np-head(C-POST)

PET allows the user to state more complex constraints on the constituents.

What we have seen above are simple constraints on the :class slot which state

that the value in that slot must be at or below some specific node in the concept

hierarchy. The constraint np head(OPERATION) is a shorthand for the more general

expression: [<.entity.class, OPERATION>]. The general form with brackets can

express a conjunction of multiple constraints, on several different slots of an entity

simultaneously, each constraint providing for different levels of specificity in the

concept hierarchy. Thus, for example, it is possible to state that the :names slot

must be non-nil, or some other slot have a certain value, or that the class of that

value be exactly at the specified node of the hierarchy, or above it, or below.

These mechanisms provide the finer control in pattern building for the advanced

user. PET can be driven both as an automatic and as a stick shift. These and still

more esoteric details are documented in a user manual, [54].

54

Figure 5.8: Predicate Editor

5.6 Acquiring Actions and the Predicate Editor

Now the user specifies what action is to be performed when the precondition

matches. S/he first selects the class of LF to be created. The type of LF is

chosen from a list of predicates stored in a separate knowledge base, of which some

are events and others entities. Figure 5.8 shows a sample predicate base for the

MUC-6 task.

The predicate editor allows the user to define new types of LFs and to specify

what slots they contain. For each slot, the user can set several parameters, indicat-

55

Figure 5.9: Final Pattern

ing what type of object the slot can receive, whether the slot is hidden—or shown

on the pattern editor—whether and how it appears in the final output, etc.

In our example, the appropriate predicate is Start-Job. The name of this

predicate is chosen from the drop-down menu on the pattern editor in figure 5.6,

and the slots pertaining to the predicate appear next to it on the right.

The user now indicates how the constituents (or, more precisely, the LFs) found

in the example are to function as arguments of the new event. This is done by

dragging-and-dropping nodes in the constituent graph into the predicate slots. The

node which is dragged identifies the sub-structure of the constituent that is used

to fill the slot.

56

The pattern definition is complete, figure 5.9. The precondition and the action

together constitute a full-fledged pattern which matches a clause and produces a

LF. The user provides a name in the text box below the example window (labeled

“Pattern Name”), and instructs PET to accept the new pattern.

5.7 Meta-rules: Syntactic Generalization

Consider the following variant of the original example:

... Jane Smith, an avowed anti-capitalist, was named yesterday as the

next CEO of IBM, Corp., ...

The basic pattern for an active clause, which we acquired in the preceding section,

will not match this passive clause. There are two essential kinds of variation here:

• syntactic transformation: the system should have syntactic variants of the

original pattern, to capture the corresponding passive clause, relative clause,

and others.

• optional modifiers, which are not semantically relevant to the scenario, but

may intervene randomly between pattern constituents. Such modifiers may

be arbitrary sentence adjuncts, appositions and PPs, as exemplified by the

italicized segments above.

How do we capture the syntactic paraphrases of the original pattern? The user

could, of course, provide transformed examples, build patterns individually for each

transformation, and insert the optional modifiers to make the patterns as general as

57

possible. This naive approach would quickly lead to gross proliferation of patterns,

rendering the user’s task unmanageable.

Instead, PET invokes Proteus’s meta-rule mechanism: after a pattern is ac-

cepted, the system can generate all related generalizations of the pattern automat-

ically.1 For example, from the active clause pattern above, a passivizing meta-rule

will generate the pattern:

np-head(C-person) RN? SA? pass-vp(C-APPOINT) SA? ’as’?

np-head(C-POST) [’by’ np-head(C-company)]?

The modifiers are made optional by the ’?’ pattern operator. The first modifier, RN,

is a built-in syntactic sub-pattern, a macro whose name may be used inside another

pattern. RN matches any right noun-phrase modifier—a prepositional phrase, an

apposition, or a subordinate clause, delimited by commas; SA is a sentence adjunct,

and pass-vp is a passive VP.

The resulting pattern will match the passive example, and will produce the

correct event LF. To maximize coverage, the system should contain meta-rules for

all clausal variants, including nominalizations. There is on-going work on building

mappings from verb roles to nominalization arguments, [32]. Meta-rules can also be

provided to generalize noun-phrase patterns, which are discussed in the following

section.
1A similar meta-rule mechanism is also featured in the SRI FASTUS system[3].

58

Info. Resources Inc.︸ ︷︷ ︸ ’s London︸ ︷︷ ︸ -based Euro. Info. Services︸ ︷︷ ︸ operation

company location company

Figure 5.10: Initial Analysis of NP

5.8 Acquiring Lower-level Patterns

By a similar process, we can acquire the pattern for analyzing the portion of our

example shown in table 4.2. This is a complex NP made up of a series of nouns,

names, and other lexical items.

The basic system would analyze this example as in figure 5.10.

and propose the precondition:

n(C-Company) ’s n(C-City) -based n(C-Company) n(operation)

The literal constituents are shown in boldface.

The approach described here involves the creation of a semantically-specific noun

group pattern which will take precedence over the general noun group pattern.

In consequence, the general noun group pattern is not applied in analyzing the

example. The customization tool also supports an alternative mechanism for special

noun groups, whereby they are first analyzed by the general noun group pattern

and the resulting LF is then restructured by a semantically-specific pattern. The

analysis also creates LF entities for each segment italicized in figure 5.10.2

The user proceeds to complete the precondition of the pattern as:
2For purposes of presentation, we have simplified the form of these patterns to emphasize the

analogy with the clause patterns. In the current implementation, each pattern element would

involve a conjunction of tests for the syntactic type (n) and the semantic class (C-Company, etc.).

59

[n(C-company) ’s]? [n(C-city) -based]? n(C-company)

n(operation)?3

To acquire the action, the user can designate one of the generated entities as the

“head” entity, or the matrix entity, for the complex NP. In the example, we may

designate the fifth constituent, n(C-Company) as the matrix, which corresponds to

the main company’s name. The remaining entities are subordinate to the matrix,

i.e., as standing in some semantic relation to it. The first constituent (when present)

fills the “parent” slot, and the third constituent fills the “location” slot. To establish

the relation, the user drags-and-drops the subordinate entity into the appropriate

slot in the matrix entity (see figure 4.2).

5.9 Evaluation Tools

The Evaluation tool allows the user to test the effect of the acquired KBs on system

performance. This can be done by:

• Processing and reporting scores for individual messages within the training

corpus.

• Processing a complete training corpus and scoring the performance of the

system.

• Estimating improvements in overall scores based on anticipated improvements

in particular individual messages.
3Un-named sub-patterns, shown here as bracketed sequences of pattern elements, is a feature

that remains to be implemented in PET/Proteus. In the current implementation, they actually

need to be build in a separate step, as named sub-patterns.

60

Figure 5.11: Evaluation Window

This feature allows the user to quantify answers to questions like: ”how much

would the overall system performance improve (in terms of the ultimate F-

measure) if a particular feature were added, or a particular problem were

fixed”. These measures are useful for planning the development process of the

IE system.

• Comparing the score of the system against a previously established baseline,

giving a document by document diff-style report, stating which scores went

up and which went down, and by how much.

The last feature (implemented in Perl) is essential in the development process, as,

in general, improvements in one part of the system may lead to degradation in

another. It is common that a new (imperfect) pattern, which improves recall in

61

one message, degrades precision in another. This tool enables the user to closely

monitor these fluctuations during the development cycle.

5.10 Approximate Matching and Clausal Modifiers

The toolkit remains incomplete in several aspects. One shortcoming is that the

bootstrapping process lacks a sense of “near hit”. If the user acquires a pattern,

and later gives an example which is very similar to the pattern but does not quite

match, PET gives no indication whatsoever of the proximity. Such an indication

would be very valuable, and would put PET more in line with the active learning

approaches mentioned in section 2.3.3.

A more basic shortcoming of PET is that even if the user notices that two

examples induce very similar patterns, or variations of the same pattern, there is

no way to combine examples or patterns. PET maps examples to patterns in a

strictly one-to-one fashion.

The problem is that different examples (supporting the same pattern) will typ-

ically bring in different modifiers, such as PPs in sentence adjunct positions (SAs).

These modifiers should all be accommodated in the resulting pattern, for maximal

generality. The modifiers are in general optional and un-ordered, in the sense that

they may appear in any SA position, and in any combination.

For example, suppose we are building a system for the “Corporate Acquisitions”

scenario, and encounter a basic pattern like

(Pattern 5.1): np(C-Company) vg(buy) np(C-Company)

Different examples may support this pattern, and they may contain any subset of

62

the following SAs, in any order:

• ’from’ np-head(C-Company) −→ Seller

• { ’for’, ’at’ } np-head(C-Currency) −→ Price

• ’on’ np-head(C-Date) −→ Date

• ’valued’ ’at’ ’about’? np-head(C-Currency) −→ Price

The first three modifiers are PPs, and the last is a subordinate clause (reduced

relative passive). Each np-head constituent matches a noun phrase; the arrow

indicates which slot in the “Purchase” predicate is filled by the corresponding NP.

(The slot name is italicized.) Note that these adjuncts fill predicate slots that are

essential, as opposed to other, irrelevant sentence-adjunct PPs, not important for

the scenario,—e.g., “after a big lunch”.

A naive approach with PET would require manually pasting the modifiers into

a single example and then generating a pattern from it. This is artificial, overly

complex and increases the possibility for human error. This indicates the need to

extend the functionality of the pattern editor to collapse multiple examples into a

single general pattern automatically.

In our recent work [26], we have instituted an informal procedure for collapsing

multiple patterns. This involves manually “growing” a single, special sub-pattern

(cf. 5.7) which contains an un-ordered disjunction of all the modifiers that can

possibly occur with the given pattern4:

SA :=
4NB.: though a sub-pattern can appear only inside another pattern, it may perfectly well fill

slots in the predicate of the containing pattern.

63

user-Defined-SA* | system-Defined-SA

user-Defined-SA :=

’from’ np-head(C-Company)

| { ’for’ | ’at’ } np-head(C-Currency)

| ’on’ np-head(C-Date)

| ’valued’ ’at’ ’about’? np-head(C-Currency)

We have done this for several scenarios studied under PET, such as “Natural

Disasters” and “Mergers and Acquisitions”. While we have some experience with

building patterns in this fashion, it remains to be implemented formally and in a

disciplined way.

Even if this approach were formalized in PET it would not solve the problem

completely. It is not sufficient to have a single user-defined modifier for the entire

scenario. To illustrate the difficulty, suppose we now try to build up the pattern

(Pattern 5.2): np(C-Company) vg(sell) np(C-Company)

Supporting examples may likely contain the SA:

• ’to’ np-head(C-Company) −→ Buyer

In our current, ad hoc scheme, we add this modifier to the user-defined SA above,

even though this modifier can never apply to pattern 5.1. For proper generality,

the user-defined SA should be able to apply to a particular pattern or verb, rather

than to the entire scenario, as it does now.

64

5.11 Assessment

Although the issues in the preceding section remain to be addressed, at the time

of writing of this thesis, the development of PET has resulted in a functioning

prototype. This prototype has been used in customizing Proteus, with a variable

degree of success, for several scenarios:

• “airplane crashes” (MUC-7 dry-run task),

• “missile and rocket launches” (MUC-7 formal task),

• “election campaigns”,

• “effects of environmental pollution”,

• “corporate mergers and acquisitions”,

• “natural disasters”.

The customization was performed by five graduate students in linguistics, four of

whom were not system experts.

PET has been ported to Japanese and Swedish, resulting in IE systems for the

“management succession” scenario.

As mentioned, PET was used for developing the MUC-7 scenarios for our official

MUC-7 system, [56]. Without delving into the complexities and idiosyncrasies of

the MUC-7 scenarios, we should mention that PET did not do too well on the F-

measure, 42.73, compared to the other participants—the top score was 50.79. The

recall-precision graph for MUC-7 is shown in figure 5.12. It is curious to observe

65

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

 Recall

Legend:
PET/Proteus

Other System
Annotator

Figure 5.12: Performance on MUC-7 ST task

that PET/Proteus got the highest overall precision score, but a relatively low recall

score. 5

This experience suggested that although PET was good at helping the user

transform examples into correct patterns, it did little to help her/him find good

examples to begin with. The customization bottleneck was shifted from building

patterns to finding them.

Thus came about the motivation for research into algorithms for pattern dis-

covery, described in the next chapter.

5The graph also shows the performance of two human annotators who prepared the answer

keys. One piece of evidence for the complexity of this task is the high degree of inter-annotator

disagreement, and the poor performance of one of the annotators.

66

Chapter 6

ExDisco: Pattern Discovery

We now present the conceptual outline of ExDisco, our procedure for automatic

acquisition of patterns. Chapter 7 elaborates our methodology in greater detail.

The procedure is unsupervised in that it does not require the training corpus to be

manually annotated with events of interest, nor a pre-classified corpus with rele-

vance judgements, nor any feedback or intervention from the user. The procedure

is based on an iterative process, with small improvements gained at each step.

6.1 Motivation

The central idea is to combine IR-style document selection with an iterative relax-

ation process. Similar techniques have been used elsewhere in NLP, and this idea

was inspired in large part, if remotely, by the work of [29] on automatic alignment

of sentences and words in a bilingual corpus for machine translation. The authors

made two crucial and mutually informing observations:

• Sentences that are translations of each other are good indicators that words

67

they contain are translation pairs.

• Conversely, words that are translation pairs indicate that the sentences which

contain them correspond to one another.

Thus there is a duality between the space of word correspondences and the space

of sentence pairings, and the two spaces are inherently mutually connected.

In our setting, in the context of discovering good patterns for information ex-

traction, we base our motivation on two fundamental assumptions or principles:

the principle of density and the principle of duality.

The Principle of Density: if we are given a set of texts which has been

partitioned into relevant vs. non-relevant subsets, then it stands to reason that

those patterns which are much more strongly correlated with the relevant subset

than with the non-relevant subset will generally be good patterns for the domain.

This observation is similar to one made in [45], where the author states:

“The motivation [...] is that domain-specific expressions will appear

substantially more often in relevant texts than irrelevant texts.”

and where this principle was used successfully to extract events describing terrorist

attacks. The second key observation is that there is a duality between the space of

documents and space of patterns.

The Principle of Duality:

I. Documents that are relevant to the scenario are strong indicators of good

patterns.

II. Conversely, good patterns are strong indicators of relevant documents.

68

Seed

New

Figure 6.1: Intuition for Iterative Discovery

Part I of the duality principle is just a restatement of the density principle. Part

II is the converse of part I, which is also intuitively true. The two together allow us

to exploit the pattern which receive highest score to expand the set of documents

believed to be relevant. The intuition that motivates the iterative procedure is

diagrammed in figure 6.1. Starting with a seed set of patterns and documents,

we proceed to identify more patterns and relevant documents in a bootstrapping

chain.

6.2 Outline of ExDisco

0. Given:

(a) a large corpus of un-annotated and un-classified documents;

(b) a trusted set of scenario patterns, initially chosen ad hoc by the user—

69

the seed. As will be seen, the seed can be quite small—two or three

patterns seem to suffice;

(c) an initial (possibly empty) set of concept classes.

1. Partition: The trusted patterns induce a binary split on the corpus: for any

document, either zero or more than zero patterns will match it. Thus the

universe of documents, U , is partitioned into the relevant sub-corpus, R, vs.

the non-relevant sub-corpus, R = U − R, with respect to the given pattern

set. Actually, the documents are assigned weights between 0 and 1; documents

matched by the seed receive the weight 1.

2. Search for new candidate patterns:

(a) Automatically convert each sentence in the corpus into a set of candidate

patterns.1

(b) Working from the relevant documents, consider those candidate patterns,

p, which meet the density criterion:

|H ∩R|
|H| � |R|

|U | (6.1)

where H = H(p) is the set of documents where p hits. The key idea is to

select those patterns whose distribution is strongly correlated with the

relevant documents, i.e., those patterns that are distributed much more

densely among the relevant documents than among the non-relevant ones.
1For each clause in the sentence we extract a tuple of its major roles: the head of the subject,

the verb group, the object, object complement, as described in the next chapter. This tuple is

considered to be a pattern for the present purposes of discovery. It constitutes a skeleton for the

rich, syntactically transformed patterns which our system uses in the extraction phase.

70

U

H(p)

R

Figure 6.2: Density of Pattern Distribution

We select the best pattern, the one with the strongest correlation, and

add it to the growing trusted set.

3. Find new concepts (optional): Based on co-occurrence with the newly cho-

sen pattern, extend the concept classes.

4. User feedback (optional): Present the new candidate and classes to the user

for review, retaining those relevant to the scenario.

5. Repeat: The new trusted pattern set induces a new partition on the corpus.

With this pattern set, return to step 1. Repeat the procedure until no more

patterns can be added.

6.3 Notes

A few points are important to observe in regard to this approach:

• The intuition behind formula 6.1 can be visualized as figure 6.2. The term

71

on the right side of the inequality is an estimate of the marginal probability

of relevance; given no other information, this is about how often we would

expect to find a relevant document in the corpus. The term on the left side is

an estimate of the conditional probability of relevance; it says, given that the

pattern p has matched a document, how likely is it to be relevant.

The term on the right is fixed for a given corpus, during a single iteration;

therefore finding the best pattern amounts to maximizing the left side. This

forms the basis for our scoring function in the next chapter, (see section 7.5).

• As presented so far, this process may result in very expansive search, poten-

tially returning all patterns about a given topic, rather than only generalizing

the specific relations sought by user. However, it seems an intuitively convinc-

ing point that if some structure (syntactic or semantic) is strongly correlated

with the relevant sub-corpus, then this structure bears information relevant

to the scenario. Thus, the discovery procedure may be used to suggest new

entries for the predicate base.

• The same general approach may be adaptable to populate lower-level knowl-

edge bases as well, i.e., the lexicon and the concept base. We will return to

this point in a later section, in relation to the predicate base.

• The procedure may be supervised at the end of each iteration. We have con-

sidered a variant of the procedure which allows the user to check the results

of the current iteration to improve the overall quality. We would expect that

verification from the user would generally improve the overall quality of the

results. However, we could not show substantial improvements with this vari-

72

ant in initial experiments. Results on this point remain inconclusive for now,

and need to be researched further.

73

Chapter 7

Methodology

Before applying the discovery procedure, we subject the corpus to several pre-

processing steps.

7.1 Pre-processing: Name Normalization

First we apply the Name Recognition module of Proteus, and replace each proper

name with a special token describing its class, e.g. C-Person, C-Company, C-

Location, etc. We also collapse together all numeric expressions such as percent-

ages, currency values, dates, etc., using a single token to designate each of these

categories. While factoring names and other out-of-dictionary items (OODs) out of

the text makes the parser’s job easier, it is essential to the discovery procedure—it

allows us to maximize the leverage of commonality or redundancy in text for finding

repeated patterns.

74

7.2 Pre-processing: Syntactic Analysis

After the OODs have been factored out, we run the corpus through a syntactic

parser. We use a general-purpose dependency parser of English, based on the

FDG formalism [52] and developed by the Research Unit for Multilingual Language

Technology at the University of Helsinki, and Conexor Oy. The parser’s output

is used for reducing each clause or noun phrase to a tuple, consisting of several

arguments.1

1. For clauses, the first argument is the subject, a “semantic” subject of a non-

finite sentence or agent of the passive:

• “John retired”,

• “John is appointed by Company”,

• “He succeeds John who retired”,

• “The board pushed John to resign his post.”

2. The second argument is the verb. The parser finds the main verb of the clause,

keeping only the base form of the head verb in a verb chain, removing tense

information and auxiliaries. For subordinate clauses the parser attempts to

reconstruct the missing semantic roles. E.g., the sentence

• “John Smith resigned, to join Sony, Inc.”

would yield two clauses, with main verbs “resign” and “join”.

3. The third argument is the object, certain object-like adverbs, subject of the

passive or subject complement:
1Transformations of Conexor parser output were previously described in [57, 58]

75

• “John is appointed by Company”,

• “John is the president of Company”,

• “The board reprimanded the chairman, who resigned”,

• “The chairman whom the board reprimanded resigned.”

4. The fourth argument is a phrase which refers to the object or the subject. A

typical example of this argument is an object complement, such as

• “The company named John Smith president.”

This argument can also be filled with the so-called copredicative [41], in the

parsing system [28]. A copredicative is a NP that refers to a subject or an

object, though this distinction is typically difficult to resolve automatically.

For example:

• “She gave us our coffee black”,

• “We took a swim naked”,

• “Bill Clinton appointed John Smith as president”.

The ambiguity in last example shows why it is difficult to resolve the reference

purely on syntactic grounds, so the the fourth argument may refer to either

the subject or the object.

5. The fifth argument contains a locative or a temporal modifier. Because this is

usually a prepositional phrase, the parser actually returns a pair: the prepo-

sition and the head of the modifier.

76

6. The last clausal argument is a prepositional phrase for which the parser could

not determine the proper attachment. This is the so-called “high-attachment”

modifier, attached at the clause level by default.

Each NP tuple contains four arguments:

1. the head noun of the NP,

2. the possessive pre-modifier—e.g., “John Smith’s retirement”,

3. a noun pre-modifier, e.g., “the Challenger disaster”

4. a post-modifier or apposition, “the nomination of John Smith”.

The parser performs several levels of syntactic normalization. The purpose of

normalization is to maximize commonality among the patterns occurring in the

text.

One type of normalization is the transformation of clausal variants, such as the

various passive and relative clauses, into a common form. This includes attempts

by the parser to resolve relative pronouns, so that “Sam hired John”, and “... John,

who was hired by Sam” yield identical structures.

The second type of normalization is the reduction of inflected forms to corre-

sponding base forms. This is done for the heads of verb groups and noun phrases,

by stripping auxiliaries, tense, number, case (for personal pronouns), etc.

In the experiments reported in this thesis, we did not use all of the rich syntactic

information returned by the parser. For now, we do not use the NP tuples at all.

Each clausal tuple is further reduced to a triple; we keep only the subject, the verb

and the object.2 When the object is missing and the fourth argument is filled, it is
2Note that the subject or the object is missing if the parser is unable to resolve it.

77

moved into the third position in the final triple.

Because we are restricting ExDisco to a triple for each clause, this last trans-

formation is intended to capture more information for verbs for which the parser

routinely produces an empty object slot, but a non-empty fourth argument, such

as “be”, “remain”, etc.3

The subsequent phases of ExDisco operate on the triples obtained as a result

of this phase. Subsequently we will refer to the arguments of each triple as subject,

verb, and object, although the last argument should more precisely be called object-

or-complement.

7.3 Generalization and Concept Classes

The resulting tuples may not repeat in the corpus with sufficient frequency to obtain

reliable statistics. For this reason, each tuple is further generalized into a set of

pairs: i.e., a verb–object pair, a subject–object pair, etc. The phase of ExDisco

which searches for patterns actually works on these pairs, or generalized patterns.

Once ExDisco has identified a pair as relevant to the scenario, it uses the

values for the missing role to construct a new concept class. This is done by

grouping together into one class the values for argument which is missing in the

generalized triple. For example, suppose ExDisco decided that the best candidate
3In the results discussed in chapter 8, this transformation is incomplete; we moved the object

complement to the third position only for the verbs be and become, since we initially assumed

these verbs to be special. Subsequent analysis revealed a large class of verbs for which the parser

analyzes a subject/object complement with a missing object, e.g., stay, remain, consider. We

intend to conduct experiments with a uniform transformation independent of the verb.

78

(generalized pair) is “company–*–person”, a SVO triple with the verb missing. It

would then form a concept class for the verbs which occur with this subject–object

pair: “company {hire/fire/expel...} person”.

Note that ExDisco does not admit all values of the missing role as members of

the new concept class. Such indiscriminate inclusion would yield completely irrel-

evant triples, such as “company–sue–person” or “company–congratulate–person”.

Each value for the missing role gives rise to a full, non-generalized triple—we call

this a primary triple. ExDisco chooses only values corresponding to primary

triples that themselves have high correlation scores, i.e. those that are more densely

distributed among the relevant documents than overall. The correlation score is

computed by the same scoring scheme as detailed below in section 7.5, using a fixed

cutoff.

Several other groups have explored induction of semantic classes through ana-

lysis of syntactic co-occurrence, [46, 43, 12, 25], though in our case, the contexts

are limited to selected syntactic constructs which are relevant to the scenario.

7.4 Indexing

From the primary triples consisting of the main three clausal arguments, we build an

inverted index back into the parsed documents. Each clause annotation produced

by the parser has (possibly) a subject, a verb, and (possibly) an object. The triple

consisting of the syntactic heads of the group serves as the key for the indexing.

A second index maps each generalized triple into a set of corresponding primary

triples.

79

7.5 Pattern Ranking

ExDisco ranks all patterns— precisely, the generalized triples— according the

strength of their correlation with the relevant sub-corpus. Let us define the corre-

lation score function, Score(p) as4:

Score(p) =
|H ∩ R|
|H| · log |H ∩R| (7.1)

where R denotes the relevant subset of documents, and H = H(p) the documents

matching p, as above. As observed in section 6.3, the first term accounts for the

conditional probability of relevance given the pattern p, and the second is a measure

of support for p among the relevant documents.

We impose two further support criteria: we distrust such frequent patterns

where |H ∩ U | > α|U | as uninformative, and rare patterns for which |H ∩ R| < β

as noise.5 At the end of each iteration, the system selects the pattern with the

highest correlation score, and adds it to the trusted set. The documents which the

winning pattern matched are added to the relevant set. The search for patterns is

then restarted.

7.6 Re-computation of Document Relevance

The above description is simplified in several important respects.

ExDisco assigns relevance scores to documents on a scale between 0 and 1. The

seed patterns are accepted as ground truth; thus the documents they match have

relevance 1. On subsequent iterations, the newly accepted patterns are not trusted
4Similarly to that used in [45]
5We used α = 0.1 and β = 2.

80

as absolutely. On iteration number i + 1, each pattern p is assigned a precision

measure, based on the relevance of the documents it matches:

Preci+1(p) =
1

|H(p)| ·
∑

d∈H(p)

Reli(d) (7.2)

where Reli(d) is the relevance of the document from the previous iteration, and

H(p) is the set of documents where p matched. In general, if K is a classifier

consisting of a set of patterns, we can define H(K) as the set of documents where

all of patterns p ∈ K match, and the “cumulative” precision of K as

Preci+1(K) =
1

|H(K)| ·
∑

d∈H(K)

Reli(d) (7.3)

Once the new winning pattern is accepted, the relevance scores of the documents are

re-adjusted as follows. For each document d which is matched by some (non-empty)

subset of the currently accepted patterns, we can view that subset of patterns as

a classifier Kd = {pj}. These patterns determine the new relevance score of the

document as

Reli+1(d) = max
(
Reli(d), P reci+1(Kd)

)
(7.4)

This ensures that the relevance score grows monotonically, and only when there is

sufficient positive evidence, as the patterns in effect vote “conjunctively” on the

documents. The experimental results which follow use this measure. Alternatively,

we can adopt a more relaxed, “disjunctive” voting scheme, and let the patterns in

Kd vote on the new relevance of d, as in:

Reli+1(d) = 1−
∏

p∈Kd

(
1− Preci+1(p)

)
(7.5)

81

or add weights to the voting, to account for variation in support of the patterns,

Rel(d) = 1− w

√ ∏
p∈Kd

(
1− Prec(p)

)wp

(7.6)

where the weights wp are defined using the relevance of the documents, as the total

support for pattern p:

wp = log
∑

d∈H(p)

Rel(d)

and w is the largest weight. Thus in formula 7.1 above, |H ∩ R| is not simply

the count of the relevant documents, but is rather their cumulative relevance, i.e.,∑
Rel(d). The recursive pairs of formulas, (7.2) and (7.5), or (7.3) and (7.4),

capture the mutual duality between patterns and documents6. This re-computation

and growing of precision and relevance scores is at the heart of the procedure.

7.7 Discovering Actions

We observed earlier that patterns consist of two parts: the triggering expression

and an action or a mapping from the syntactic to the semantic roles. The above

sections have focused exclusively on the discovery of triggers. We can begin to

address the problem of discovering actions in a similar fashion by bootstrapping.

The discovery procedure for actions would run as follows.

For the seed pattern triggers, the user specifies the mapping explicitly. Once

we have acquired a set of good triggers, we can then study the occurrences of the

triggers in actual text. The seed triggers induce a set of instances; an instance is a

tuple of pattern arguments whose relation is known. Given enough data, we would
6We did not observe a significant difference in performance between the two formulas 7.4 and

7.6 in our experiments; the results which follow use 7.6.

82

expect that important events are described by several instances, and in different

ways.7

At this point we could exploit the duality between instances on one hand and

triggers on the other: if a given trigger matches an instance whose elements stand

in a known relation to each other, we can infer the relation induced by this trigger.

On the other hand, each new trigger inducing a given relation will produce more

instances of that relation. This calls for a bootstrapping algorithm to fill out the

relations induced by the triggers discovered by our procedure above; this is not

implemented currently and remains to be investigated.

7This observation is closely related to one on which the DIPRE approach is predicated, see

chapter 2 on prior work.

83

Chapter 8

Experimental Results

Establishing an objective measure of goodness of patterns discovered by ExDisco

is not a straightforward matter. Evaluation is complicated by several factors.

First, the discovered patterns are in a sense incomplete: they cannot be used for

information extraction directly. The patterns carry only trigger information, and

lack action information, i.e., which events a pattern induces and how the pattern

arguments are used to fill event slots.

Second, to conduct a full, MUC-style IE evaluation, the patterns must first

be properly incorporated into the Proteus knowledge bases. As ExDisco stands

alone, incorporating the patterns into Proteus requires additional manual effort.

Third, even if we were to incorporate the discovered patterns into some form

of our IE system, in order to have an objective evaluation, we would need a set

of “correct answers” against which to compare the system’s results. Such correct

answers are very expensive to produce, as they require human annotation, which

takes great amounts of time.

The “correct answers”—which can be used for an objective evaluation—can

84

obtain at different level of detail. At the level of greatest detailed are the standard

MUC ST answer templates. In this form, the answer specifies for each document

which events are to be extracted and how the slots in each event are to be filled.

Alternatively, we may have answers only at the level of relevant documents. This

corresponds exactly to relevance judgements which constitute the “correct answer”

in IR evaluations, like the Text Retrieval Conferences (TREC) evaluations, cf., e.g.,

[50].

With this in view, in this chapter we propose three different measures of per-

formance:

• Qualitative evaluation: We begin by manually inspecting the extracted

patterns, and attempt judge their quality without resorting to quantitative

measures. Thus, since it rests completely on the reviewer’s intuition, this will

not be an altogether objective method. However, it will provide a fairly good

sense of how well the patterns discovered by ExDisco match the scenario.

• Text filtering: If we have a set of documents with relevance judgements,

we can obtain an effective measure by noting that, in addition to growing

the pattern set, ExDisco also grows the relevance rankings of documents.

The quality of retrieved documents can be evaluated directly, without human

intervention. This view on the discovery procedure is closely related to the

MUC “text-filtering” task, in which the systems are judged only at the level

of documents, as in IR, rather than at the level of events and slots.

• Event extraction: If we have a set of test documents with answer keys—

correctly filled templates—for the scenario, we can evaluate ExDisco by

85

manually incorporating the discovered patterns into the knowledge bases and

running a full MUC-style extraction with scoring.

We present the different types of evaluations in turn.

8.1 Qualitative Evaluation

We tested ExDisco on several scenarios in the domains of business news and

general news. For business news, we chose a corpus of 9,224 articles from the Wall

Street Journal. The articles were drawn from a two month period in 1992 and one

month in 1994. The parsed articles yielded a total of 440,000 clausal tuples, of

which 215,000 were distinct.

For general news, we used a corpus of 14,000 articles from Associated press,

covering the first three months of 1989.

8.1.1 Management Succession

We tested ExDisco most extensively under the Management Succession scenario,

since for this scenario we have pre-existing extraction systems and high-quality

Training and Test data (cf. section 2.1). We start with the seed in table 8.1.

Subject Verb Direct Object

C-Company V-Appoint C-Person

C-Person V-Resign —

Table 8.1: Seed pattern set for “Management Succession”

The tokens C-Company and C-Person denote semantic classes containing named

86

entities of the corresponding types. V-Appoint denotes the list of verbs { appoint,

elect, promote, name, nominate }, V-Resign = { resign, depart, quit }.
The following is a list of some of the patterns discovered by ExDisco over

the first 80 iterations. The list shows the SVO triples, together with additional

(bracketed) constituents, which are outside of the central SVO triple, and are in-

cluded here for clarity. The list includes several examples of “bad” elements for

demonstration purposes—these are underlined.

1. person-succeed-person

2. person-{be,become}-president

3. person-become-{chairman,officer,president,executive}

4. person-retire-

5. person-serve-{company,board,sentence}

6. person-{run,leave,join,say,own,head,found,
... start,remain,rejoin}-company

7. person-assume-{post,title,responsibility,control,duty}

8. person-replace-person

9. person-step-[down]-[as-officer]

10. person-{relinquish,assume,hold,accept,retain,
... take,resign,leave}-post

11. company-name-{chairman,president,successor}

87

12. ∗-hire-person

13. person-run-{company,operation,campaign,organization,business}

14. person-hold-{position,title,post,stake,share,job,meeting}

15. person-{hold,retain,resign,fill}-position

16. person-take-{control,helm,care,action,office,retirement,
... job,post,duty,responsibility}

Evidently, ExDisco discovers useful patterns. It is interesting, if sobering, to

observe that the pattern person-serve-sentence turns out to be strongly corre-

lated with this domain...

A simple measure of performance is comparing the patterns found by the pro-

cedure with those in the extraction engine which was manually constructed for the

same task. Our MUC-6 system used approximately 75 clause level patterns, with

30 distinct verbal heads. In one conservative experiment, we observed that the

discovery procedure found 17 of these verbs, or 57%. However, it also found many

clausal patterns which were missing from the manually constructed system, and

which are strongly relevant to the scenario, e.g.,:

company-bring-person-[in]-[as+officer]

person-{come,return}-[to+company]-[as+officer]
person-rejoin-company-[as+officer]

person-tap-person-[to-be-officer]

person-{continue,remain,stay}-[as+officer]
person-pursue-interest

88

At the risk of setting off a philosophical debate over what is or is not relevant to a

scenario, we note that the first four of these are directly essential to the scenario,

as they convey a change of post.

The next pattern contains “staying” verbs. Although Proteus does not have such

patterns, these patterns are actually also needed in certain special cases, which are

covered in the MUC-6 ST task specifications.

Namely, in a case when a person occupying some explicitly stated post, Pprev,

assumes a new post, Pnew in another company, the fill rules automatically assume

an implicit transition in which the person left Pprev, and mandate that the system

generate a corresponding “departure” event. However, when explicit information

to the contrary is available, e.g., as conveyed by the “staying” patterns, the system

has sufficient information not to generate a “departure” event.

The pattern “person-pursue-interest” is the most curious of those found by

ExDisco. Surprisingly, it too is useful, even in the strictest MUC-6 sense, cf. [39].

According to the task specifications, for each succession event, the system must fill

a slot called “other-organization”. This slot contains the name of the organization

from which the person came to the new post or to which s/he went from the old

post. Whenever such information is available in the text it must be used to fill

the slot. With the aid of ExDisco, we learned that this particular pattern is

consistently used in text to indicate that the person left to pursue other, typically

undisclosed interests. Having this clue would relieve the system from seeking other

information to fill the “other-organization” slot.

We should note that in preparation for MUC-6, the designers of Proteus studied

not only the 100-document Training corpus, but also a large number of additional

89

documents retrieved with IR queries. These new patterns, found by ExDisco did

not come up.

We should also note in this context that at the time of the MUC-6 competition

Proteus achieved the highest F-score of all participants.

8.1.2 Mergers and Acquisitions

For this scenario, we used the seed in table 8.2.

Subject Verb Direct Object

∗ V-Buy C-Company

C-Company merge ∗

Table 8.2: Seed pattern set for “Mergers and Acquisitions”

The class V-Buy contains two verbs: { buy, purchase }. ExDisco found the

following patterns (among others):

∗-complete-purchase
company-express-interest

company-seek-partner

company-acquire-{business,company,stake,interest}
company-{acquire,have,own,take[over],pay,drop,sell}-company
company-{have,value,acquire}-asset
{company,company-unit,bank}-have-asset
∗-expect-transaction
acquisition-be-step

company-own-{company,station,stake,store,business}

90

company-{hold,buy,own,raise,pay,acquire,sell,
... boost,take,swap,retain}-stake
company-hold-{stake,percent,talk,interest,share,position}
company-buy-{stake,share}
company-have-{sale,asset,earning,revenue}
company-{issue,have,repurchase,own,sell,buy,hold}-share
company-{report,have,post,expect,record}-loss
company-report-{loss,earning,income,profit,increase,sale}
company-{become,hire,sell,control,invest,
... compete,make}-company

8.1.3 Corporate Lawsuits

For this scenario, we used the seed in table 8.3.

Subject Verb Direct Object

∗ V-Sue C-Organization

∗ bring suit

Table 8.3: Seed pattern set for “Corporate Lawsuits”

The class V-Sue contains two verbs: { sue, litigate }. This small seed induces a

large number of relevant patterns:

person-hear-case

plaintiff-seek-damage

group-charge-[that ...]

91

∗-face-suit
company-appeal-

we-marshal-argument

they-recoup-loss

they-alert-regulator

company-abet-violation

lawsuit-allege-[that ...]

suit-seek-[that ...]

assets-be-frozen

{person,government-org}-file-suit
{person,court}-reject-argument
person-rule-[that ...]

company-deny-{allegation,charge,wrongdoing}
company-settle-charge

court-rule-[that ...]

8.1.4 Natural Disasters

For this scenario, we used the seed in table 8.4.

Subject Verb Direct Object

C-Disaster cause ∗
C-Disaster V-damage C-Urban

Table 8.4: Seed pattern set for “Natural Disasters”

The concept classes used here are: C-Disaster = { earthquake, tornado, flood,

92

hurricane, landslide, snowstorm, avalanche }, V-Damage = { hit, destroy, ravage,

damage } , C-Urban = { street, bridge, house, home, — }.
This seed induces the following relevant patterns:

quake-measured-(number)

quake-was-felt

earthquake-shook-area

earthquake-was-centered

quake-struck-

quake-was-considered

quake-occurred-

quake-knocked-[out]-power

storm-knocked-[out]-power

damage-was-reported

aftershock-injured-

aftershock-killed-people

quake-registered-

it-caused-damage

quake-{killed,injured}-people

8.2 Text Filtering

As new patterns are discovered, documents that contain these patterns gain in

relevance weight. In this evaluation, we consider the quality of documents which

ExDisco deems relevant. For the purposes of judging precision and recall, a docu-

93

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

 Recall

Legend:
Management/Test

Management/Train
MUC-6

Figure 8.1: Management Succession

ment is counted as relevant if its internal relevance score reaches a pre-determined

threshold θ. In this way we can view ExDisco as an IR engine and evaluate it as

such. We compared ExDisco’s behavior under different thresholds, and empiri-

cally, θ = 0.5 appears to give the best results.

This gives us a binary relevance judgement for each document in the collection,

and we compute recall and precision according to the IR-style formulas 4.1 and 4.2.

For the MUC-6 task, we tested ExDisco against the two MUC-6 corpora,

using only the relevance information from the answer keys. Both of these sets

were included among the 10,000 articles on which ExDisco was trained. These

judgements constitute the hidden truth which was used only for evaluation, not

visible to ExDisco.

94

Figure 8.1 shows recall plotted against precision on the two corpora, over 100

iterations, starting with the seed patterns in section 8.1. We observe a similar

trend in both curves, where recall grows steadily with reasonable precision until at

some point bad patterns invade the system and improvement stops. The difference

between the two curves is about 10 points of recall. We can only speculate about

the possible cause for this, since the Test corpus remains unrevealed. It is likely due

to the fact that some patterns are more easily learned by ExDisco than others,

and these patterns happen to occur in larger proportion in the documents in the

Test corpus.

It is interesting to compare ExDisco’s text filtering results on the MUC-6 Test

corpus with those of the other MUC-6 participants, shown anonymously in the

plot. ExDisco attains values well within the range of the MUC participants, all of

which were either heavily-supervised or manually coded systems. It is important to

bear in mind that ExDisco had no benefit of training material, or any information

beyond the seed pattern set.

Figure 8.2 shows the performance of text filtering on the Acquisition task, again,

given the seed in table 8.2. ExDisco was trained on the same WSJ corpus, and

tested against a set of 200 documents. We retrieved this set using keyword-based

IR search, and judged their relevance by hand.

8.3 Event Extraction

We now describe how we evaluated ExDisco on the slot-filling task. We manually

incorporated the discovered patterns into the Proteus knowledge bases and ran a

full MUC-style extraction against the original MUC-6 Training and Test corpora,

95

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

 Recall

Legend:
Acquisition

Figure 8.2: Mergers/Acquisitions

each containing 100 Wall Street Journal articles. We then took the results pro-

duced by Proteus and applied full MUC scoring to them. The recall and precision

on the MUC-6 corpora are shown in table 8.3. We started with a version of Proteus

which was used in MUC-6 in 1995 and had undergone continual improvements since

the MUC evaluation. We removed all scenario-specific clause and nominalization

patterns.1 We then reviewed the patterns that were generated by ExDisco, and

discarded those which were not relevant to the task, and those which did not cor-

respond directly to a predicate already implemented for this task. This is worth
1There are also a few noun phrase patterns which can give rise to scenario events. For example,

“Mr Smith, former president of IBM,...”, may induce an event record where Fred Smith left IBM.

These patterns were left inside Proteus for all runs, and they contribute to the relatively high

baseline scores obtained using just the seed event patterns.

96

Training Test

Pattern Base Recall Precision F Recall Precision F

Seed 38 83 52.60 27 74 39.58

ExDisco 62 80 69.94 52 72 60.16

Union 69 79 73.50 57 73 63.56

Manual-MUC 54 71 61.93 47 70 56.40

Manual-NOW 69 79 73.91 56 75 64.04

Table 8.5: Performance of slot filling on “Management Succession”

mentioning, since ExDisco discovered several relevant patterns which could not be

accommodated in Proteus in its current state. These were the “staying-on-a-job”

patterns, discussed in section 8.1.1, for instance “Person remained president”.

To use the “staying” patterns we would have to make a set of additional inference

rules. In cases where the system infers a departure from some combination of

events, these rules should check for the presence of a “staying” event and override

the implicit departure. We have not yet added such “suppression” rules to Proteus

to accommodate the “staying” patterns.

The remaining, “good” patterns were augmented with actions—i.e., information

about the corresponding predicate, and the mapping from the pattern’s constituents

to predicate arguments. As all clause-level patterns in Proteus, the resulting pat-

terns are automatically generalized to handle syntactic variants such as passive,

relative clause, etc. The resulting pattern bases were applied to the MUC-6 Formal

Training and Formal Test corpora, and the output evaluated with the MUC scorer.

The Seed pattern base consists of just the initial pattern set, given in table 8.1.

97

The seed patterns alone give result in a recall of 38% and precision of 83%, for a

total F-measure of 52.60. This serves as the baseline for the Training corpus.

We then added in the patterns which the system discovered automatically, pro-

ducing the pattern base called ExDisco. That gave us a 24 point rise on recall

and a loss of 3 points on precision, boosting the F-measure by over 17F points to

almost 70F. For comparison, our official result on this corpus was just under 62F—

this corresponds to the pattern base labeled Manual-MUC. This pattern base was

manually prepared for the MUC-6 Training corpus over the course of 1 month of

full-time work by at least one computational linguist (1.5 linguists, actually), who

studied the 100-document Training corpus in depth over that time. The last row,

Manual-Now, shows the current performance of the Proteus system, which is just

under 74F points. The base called Union contains the union of ExDisco and

Manual-Now.

Similarly, we observe a gain of over 20F points on the Formal Test corpus, when

going from the seed pattern base to ExDisco. The resulting score of over 60F is

again higher than the official Proteus MUC-6 score.

We find these results encouraging: Proteus performs better with the patterns

discovered by ExDisco than it did after one month of manual tuning and devel-

opment; in fact, this performance is close to current levels, which are the result of

substantial additional development.

Further notes concerning these results follow in the discussion in the next section.

98

8.4 Caveats: Management Succession

The results on the slot filling task for the Management Succession task, reported

above should be interpreted with several caveats in mind.

1. The overall performance of the IE system depends on many factors, and al-

though the event patterns in some sense play a principal role, the remaining

components of the underlying engine impact performance as well. Those com-

ponents, including name recognition, syntactic analysis, anaphora resolution,

and the inference engine, have been improved since the formal MUC-6 evalu-

ation in 1995.

In the formal evaluations, reported in table 8.3, the first three bases—Seed,

ExDisco and Union—all had the benefit of running on top of the improved

Proteus. Therefore some of the gain over the MUC formal evaluation score—

the Manual-MUC base —may be attributable to these improvements. How-

ever, if we consider the relative improvements among the first three bases and

Manual-NOW, these bases are commensurate in this regards.

2. As we noted above, before including the discovered patterns in Proteus, we

reviewed the patterns, selected the good ones and augmented them by adding

the appropriate actions to the triggers. Since this work was done manually,

the overall, end-to-end procedure—i.e., discovery plus customization—is not

entirely automatic.

However, the review and augmentation process took little time, compared to

the amount of time required for manual corpus analysis and development of

the pattern base.

99

3. As we mentioned, the pattern base ExDisco in table 8.3 does not include

the “staying-on-a-job” patterns discovered in section 8.1.1. Thus, in a way,

ExDisco is not getting full credit for its discoveries in table 8.3. On the

other hand, neither do the manual bases in table 8.3 get the benefit of such

suppression, and it is difficult to speculate in retrospect how well the human

developers would have done had they provided such a mechanism in Proteus

from the outset.

100

Chapter 9

Discussion

We now turn to an analysis of the results presented in the preceding chapter, their

relation to prior work, and problems that remain to be researched.

9.1 Utility Analysis

The evaluations in the preceding chapter confirm the effectiveness of ExDisco as

a tool for finding high-quality patterns. We now turn to the question of its utility:

is all this work necessary? How can we confirm whether it is necessary?

Consider the set of patterns Q, the final product of the discovery process for a

given task, say, again, “Management Succession”. Let us view Q as the “correct

solution” to the problem of finding good patterns to capture the scenario. Let

N = |Q|. This is diagrammed on the right side of figure 9.1.

Now consider the list of patterns which ExDisco evaluates on its very first

iteration. Each pattern has some correlation score, according to the formula 7.1.

Suppose we were to take the patterns reviewed on the first iteration and sort them

101

QZ 1

N=|Q|NZ 1

2NZ 1

Figure 9.1: Patterns from First and Last Iteration

by correlation score. Let Z1 be this sorted list (on the first iteration). Now we read

off the first N patterns in Z1, and let Z1
N be this list of the N best patterns. How

far off is Z1
N from the correct solution Q? Clearly, if Z1

N were already very close to

Q, the usefulness of ExDisco is called into question. Suppose we include also the

next N patterns in the list, Z1
2N how much closer to the solution would that bring

us?

The answer is shown in figure 9.2. We can view this as a retrieval problem: for

each j = 1, 2, ..., compute recall and precision of the first j ∗N patterns in Z1 with

respect to the “truth” given by the patterns in Q. The plot shows how recall and

precision vary with j. This test was conducted on the “Management Succession”

MUC-6 Training Corpus, over 65 iterations. Note that typically |Z i| � N ; in this

102

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 Recall

Utility

Figure 9.2: Utility of Z1 against Q

test N was 65, and |Z1| was just under 1000.

If we use only the first N patterns of Z1, we recover about 40% of the patterns

in Q. If we also look through the next N patterns, we reach half of Q, and .22 of

all the patterns we have to consider, or one in every four or five, appear in the final

set. It is clear that Z1 alone is not very helpful at finding good patterns—the cost

of searching through the list for Q is large.

The situation is actually somewhat more complicated. We inspected Z1
N thor-

oughly, paying particular attention to the relationship between Z1
N and Q. We

found that these patterns fall about evenly into three groups:

A. 27 patterns, or 41%, appeared in both.

B. 18 more patterns, or another 27%, of Z1
N seemed good, but did not appear in

103

Q.

C. the remaining 20 patterns of Z1
N were not in Q and were clearly irrelevant.

If we treat Q as the “gold standard”, as we agreed at the outset of this section,

then judging Z1
N relative to Q leaves the precision and recall at 41%. However,

this assumption may not be the most fair way to assess group B. If we assume a

more liberal stance with respect to B, we could say that Z1
N achieves |A∪B|

N
= 0.69

precision, but this would be irrespective of Q.

It is difficult to arrive at a strict judgement of set inclusion in this context,

because we cannot claim that the patterns in group B were strictly missing from Q.

In reality, all but one of the verbs in group B—*-select-person, were subsumed

by other patterns in Q. This happens because the patterns under discussion here

are under-specified—they are generalized patterns with one missing argument.

If we were to accept this subsumption argument, we would be moved to accept

the stricter judgement of 41%. However, then one could counter-argue that patterns

in Z1
N subsume (at least partly) patterns in Q, and so Z1

N merits a higher recall

score with respect to Q.

If we abstain from the “gold standard” assumption, and judge Q on its own

merit, we should observe that of the 65 patterns in Q, four or five were of question-

able relevance, see section 9.2.1. This yields a minimum precision between 92% and

94% for ExDisco. By any measure, this still compares favorably with the figures

for Z1
N , which would lie somewhere between 41% and 69%.

Figure 9.3 shows how the situation changes on successive iterations. The lines

plotted, starting from the bottom, are Z i for i = 1, 10, 20, ..., every 10th iteration.

The graph shows how the precision of Z i
jN improves on each iteration.

104

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

 Recall

Utility

Figure 9.3: Utility across 80 iterations

This confirms the utility of ExDisco.

9.2 Analysis: Management Succession

We been analyzing the performance of ExDisco in its current state. We are at the

early stages of understanding how best to tune these techniques, and the analysis

suggests a number of areas that are in need of refinement.

As is common in NLP, the errors of ExDisco can be divided into two groups:

errors of commission and errors of omission. The former degrade the precision

scores, and the latter the recall.

105

9.2.1 Errors of Commission

In most cases, the patterns the procedure discovered were basically good, but oc-

casionally included some irrelevant elements in the concept class for the expanded

wild-card role. There were five potentially questionable patterns:

Bad1 = person-have-HaveObject

Bad2 = {person,company}-{say,report}-

where the class HaveObject is { responsibility, plan, trouble, problem, experience,

idea }. The pattern Bad1 was acquired quite late—iteration 61—and actually

subsumes one potentially relevant pattern: person-have-responsibility, though

the remaining objects in HaveObject are clearly non-relevant.

As for the patterns in Bad2, it is unclear what modifications to the procedure

might remove this type of error in principle. These patterns are weakly correlated

with the scenario, since companies and their spokespersons usually announce major

changes in corporate structure or operations, and management succession happens

to be one instance of such major change. Thus, although we can expect these

particular patterns to have wide support inside the relevant document set, we should

as well expect wide support outside. With our current scoring function after several

dozen iterations these weak-precision patterns reach the top of the ranked list.

The real difficulty in dealing with this problem is that we don’t want to start

modifying the scoring functions only to weed out this phenomenon, because often

such weakly correlated patterns can be essential to the scenario. An example of this

are the patterns which capture the number of casualties in the “Natural Disaster”

scenario. Here, the fact that people die in un-natural disasters as well—giving

wide support outside of the scenario—should not disqualify this valuable pattern’s

106

candidacy. The same holds for patterns stating amount of damage incurred in

natural disasters, etc.

We should note that errors of commission are in principle less troublesome in

our setting, since they are easy to catch—by supervising the procedure. Errors

of the second kind are much more problematic in this regard, and in fact they are

what motivated the entire investigation into un-supervised learning techniques. We

turn to these next.

9.2.2 Errors of Omission

As figure 8.1 shows, ExDisco cannot get beyond 80% recall on the MUC-6 Train-

ing Corpus without suffering a precipitous drop in precision. A study of the missing

documents revealed, as expected, that several documents were not discovered be-

cause of missing patterns.

These patterns in turn were missing due to several kinds of errors. After about

70 iterations, there were twelve relevant documents still missing.

• Four of these documents contained good discovered patterns and had non-zero

relevance scores, between .34 and .41. This fell below the threshold θ = 0.5,

which we chose ad hoc, cf. section 8.2. One of the documents contained the

“weak” pattern 3 times, but ExDisco currently assigns no additional credit

for multiple hits within a document.

• Five documents contained somewhat complex syntax, such as appositions and

verbal conjunctions, which the parser could not resolve. For these no rea-

sonable analysis was obtained and ExDisco had no hope of recovering the

patterns.

107

• One document exhibited completely egregious behavior: it consisted of a single

incomplete but long sentence, the event was partially stated in the body of

the document, while the main verb was stranded in the headline.

• At least three documents contained truly missing patterns which could be

recovered by possible extensions to ExDisco.

As shown in the lists of discovered patterns in section 8.1 on qualitative evalu-

ation, on each iteration, ExDisco finds rich classes of related terms. These sets of

terms are captured by the wild-card arguments of the generalized patterns. Cur-

rently, the procedure does not make use of the discovered classes across iterations.

This area needs improvement. It would correspond to step 3 in the outlined proce-

dure, section 6.2, where the classes are adjusted based on new relevant patterns.

More importantly, rather than merely growing the classes, we should dovetail

the discovery of patterns and of concepts classes, i.e., to use the richer concept

classes to boost the coverage of the patterns on subsequent iterations.

There is an obvious need for some form of generalization of patterns, and merging

of patterns and concept classes to enrich the set of discovered patterns.

Preliminary analysis revealed several relevant documents which were not picked

up because of missing patterns. Two such missing patterns were

Pm = officer-take-retirement, and

Pn = executive-resign-post.

Consider the data from the preceding chapter, section 8.1.1. Among the patterns

discovered by ExDisco there were related patterns:

108

P2 = person-{be,become}-president
P3 = person-become-{chairman,officer,president,executive}
P11 = company-name-{chairman,president,successor}

Recall that the seed contains the pattern Ps = company-name-person. These and

similar data would lead us to propose several types of mergers:

1. We should consider merging P11 with the seed pattern Ps, to extend the con-

cept class to C = {chairman,president,successor,person}. This is intu-

itively justified because all terms in this class function as the object of the

same subject-verb pair. We should be able to measure the strength of this

association across different subject-verb pairs.

2. Another extension for the class C, to include officer, is supported by the

evidence from the pattern P3, and the overlap between the classes in these

patterns. Again, the strength of the overlap can be measured across patterns.

3. The patterns P2 and P3 overlap in a complete clausal triple:

person-become-president

is common to both. This suggests merging the two patterns to generalize both

the verb and object positions simultaneously:

person-{be,become}-{chairman,officer,president,executive}

Another potentially fruitful method for extension of concept classes derives from

the two central observations in [59]: namely, the founding principles that posit ”one

sense per discourse” and ”one sense per collocation”.

109

Suppose we find a certain subject-verb pair occurring with a particular object,

s-v-o, among the accepted patterns. Suppose also that in one of the documents

where s-v-o occurs, we find the tuple s-v-o’, with a different object. If we sub-

scribe to Yarowsky’s second principle, we can assume that the given collocation, the

subject-verb pair (s,v), is used in the same sense in the discourse. This should

compel us to merge the two objects into a single class of related terms, s-v-{o,o’}.
This merging principle above assumed that s-v-o and s-v-o’ occur in the

same relevant document. It might be acceptable to relax the condition in one of

two ways. One relaxation would be inspired by viewing the entire set of relevant

documents as a single, coherent discourse. If we subscribe to this view, we could

invoke Yarowsky’s first principle to merge together {o,o’} even if the patterns

s-v-o and s-v-o’ occur in two different relevant documents.

Another direction is to merge {o,o’} into one class if they co-occur with only

one clausal argument in the same relevant document. For example, we could merge

all objects co-occurring with a given verb in the document (irrespective of the

subject), on the belief that the sense of the verb is fixed for the given discourse.

Thus, if we put in place some mechanisms for extending classes, ExDisco

would have a better chance of recovering the missing documents. These variants

seem potentially promising, and will require further research.

9.3 Research Problems

This section lists some of the important problems which remain to be resolved, but

which lie beyond the scope of this thesis.

110

9.3.1 Variation across Scenarios

First, we clearly need to study the behavior of the discovery algorithms on ad-

ditional scenarios to determine to what extent scenario-specific phenomena affect

their performance. The two scenarios, “Management Succession” and “Mergers

and Acquisitions”, which we have evaluated on text filtering, exhibit a noticeable

difference in the recall/precision plane.

On the other hand, on the “Natural Disasters” scenario we could not get reason-

able text filtering scores at all. Despite the high-quality patterns which ExDisco

finds on successive iterations, the bootstrapping does not seem to get off the ground

to pull in more relevant documents. The best spread we could get with any seed

was starting with recall 0.28 and precision 0.86, and after 270 iterations gets up to

recall 0.41 (at 0.77 precision).

Clearly, a closely related question is how sensitive the discovery procedure is to

the initial “seed” pattern set; i.e., how its success is dependent on the goodness of

the patterns the user provides initially. However, in the case of “Natural Disasters”,

the difficulty may lie beyond the choice of a good seed. Our on-going work, [27] and

[16] suggests that this may be due to two types of linguistic variation: differences

in text type and the scale of discourse complexity inherent to a given scenario.

Similar work appeared earlier, e.g., [4], which began to address the important

question of the necessity and possibility of qualifying the discourse-level complexity

of a scenario. It would be very helpful if we could state in formal terms the basic

intuition of anyone familiar with the MUC tasks, e.g., that the MUC-6 task was

much “simpler” or tractable than the MUC-7 tasks.

In relation to the seed, another question is whether the seed can be something

111

other than a set of patterns, e.g., whether it may rather be a set of terms or concepts,

or documents. Other research on unsupervised learning, e.g., [51], suggests that it’s

possible.

9.3.2 Convergence

We need to consider variants of the formulas for computing the confidence of a

document with respect to patterns’ ranks, and try to to determine empirically

which of these variants is optimal.

We plan to experiment with selection of weights and thresholds for control-

ling the rankings of patterns and documents, criteria for terminating the iteration

process, and for dynamic adjustments of these weights.

The fundamental question here is convergence, i.e., is there any sense in which we

can hope or expect the discovery process to converge. At the time of its inception,

the hope was that ExDisco would work for some number of iterations, and then

come back to say that no more patterns can be discovered. Our experience so far

shows that rather, as we saw section 8.2, (for those scenarios where we can get good

results) ExDisco typically finds strong patterns, then reaches a critical point and

lapses into accepting irrelevant patterns, after which the precision degrades.

The question is whether this is an artifact of the choice of scoring functions and

weights, or whether divergence is somehow inherent in the task. It is important

to investigate this and other unsupervised learning schemes, to try to find the

answer. Perhaps a closer examination of the patterns around the critical point,

might provide a clue. The hope would be to find a parameter which characterizes

the likelihood of goodness on each iteration or indicates an appropriate place to

112

stop.

9.3.3 Syntactic Information

In the initial experiments with ExDisco we utilized only the main clausal argu-

ments: subject, verb and object. However, the parser provides much richer infor-

mation, (see section 7.2). We need to extend the procedures to take advantage of

this information, generalizing on additional arguments.

The parser also provides information on noun phrases. In particular, we would

expect that nominalizations are at least as important as verbs as indicators of

relevance to a scenario. We need to extend the procedure to account for NP patterns

as well.

There are also several problems of a more technical nature. One is providing

more “help” to the parser. The parser routinely has trouble with certain common

constructions which can be easily handled with simple semantic patterns; for exam-

ple, the appositions “person, age”, or compound locations “city, state”. In a sense,

these are not syntactic phenomena, and the procedure should not suffer because

the parser misses them.

Often we find that a single triple has a strong score even without generalization

(i.e., with no wild-card arguments). In such situations, the system “discovers” two

or more of its generalizations, and gives the matched documents multiple credit.

We need to find a disciplined way to compensate for this bias.

113

9.3.4 Person-in-the-Loop

An important path of investigation is “putting a person inside the loop”, in keep-

ing with a current trend in data mining research. We expect to be able to show

substantial returns in some scenarios, for minimal intervention required at each it-

eration. The human may be asked to filter, say, the 5 top-ranking patterns, instead

of just the single best one. S/he may also be asked to prune the suggested concept

classes. We would expect improvements in precision on the successive iterations—

this would be rather like having a growing human-selected, seed set of patterns and

concepts, except that the user does not need to find the patterns, only to check the

ones the system proposes.

We have begun investigating this direction, and added the basic functionality

to ExDisco for human feedback and intervention at the end of each iteration.

However, the initial results are inconclusive.

Several problems have emerged in connection with this extension. One problem

is that the person in the loop in general does not wish to make a binary decision—the

patterns are often neither good nor bad but somewhere in between. The system

currently lacks a disciplined way of helping the user assign weight to the newly

acquired pattern.

Another consideration is that at times ExDisco may find such strong, “killer”

patterns that the user may wish to add them to the seed and restart the process

from the beginning.

114

9.3.5 Putting It All Together

Lastly, we need to put in place mechanisms that would “glue” together phases II

and III, PET and ExDisco. The latter discovers multiple useful example sentences

to support the induction of a pattern into the pattern base. These examples could

give rise to a wealth of modifiers for the given pattern.

As discussed in section 5.10, PET needs to be extended to incorporate the

variation in modifiers into the pattern in a disciplined way. A useful “glue” tool

would

• help the user organize the discovered examples,

• collapse the examples to find the largest common basic pattern, and then

• interact with the extended PET to enrich the pattern with an appropriate set

of optional modifiers.

9.4 A Formal Framework

The presence of—by now—a considerable number of similar unsupervised approaches,

as listed in section 2.3.4, suggests the presence of a fundamental commonality of

principle. It would seem natural to seek to capture the commonality formally, in

terms of features of the related approaches.

9.4.1 Co-Training

[5] makes an important contribution in this regard. The authors present a list of

problems in the area of inducing classifiers from unlabeled data. They review the

115

corresponding solutions, which all involve un-supervised learning, and attempt to

gather these approaches under a single umbrella, a unifying formal framework they

call “co-training”. According to Mitchell, the key defining characteristic of this

class of problems is the presence of two or more “mutually redundant” views (or

features) on the data-points which are being classified; the co-variance of the fea-

tures with respect to the instances; and hence, the system’s ability to progressively

train multiple “independent” classifiers, starting with unlabeled data and a few

labeled examples.

The authors develop the framework and present a PAC-based proof of learn-

ability for problems falling into the class.

However, there are several unsatisfactory aspects to this view. Leaving aside for

the moment the inherent violation of the “zero-one-infinity” principle, and leaving

aside [11] (which indeed seems to match the framework), it does not seem natural

to class most approaches we discussed in 2.3.4 under the all-encompassing heading

of co-training.

9.4.2 Duality between Rules and Instances

it seems more intuitive to seek a simpler unifying principle in the learning ap-

proaches presented in section 2.3.4. Namely, the common shared feature of these

approaches is the presence of a classifier on one hand, and an instance base on

the other. The classifier may be multi-partite, but it is a single classifier in the

sense that it learns to solve a single classification problem. In many cases, the

classifier happens to be a set of rules whose number and confidence grows during

training. The instance base is a sub-collection of data points which have acquired

116

classification labels during training. The presence of multiple features in the in-

stances, and the co-variance of the features are still essential, since that is what

allows bootstrapping to happen.

In this view, in the case of ExDisco, the single classifier is the growing set

of patterns, and the instances are the documents. The classification label is the

relevance judgement. In case of [1], [7] and [46], the classifier, again, is a growing set

of patterns, and the instances are actual facts in the database, which find different

textual realizations in different documents. In [29], training the “classifier” can

be seen as expanding the set of “rules”, which are translation word pairs. The

instances are the aligned translation sentence pairs, in the given bi-lingual corpus.

In [59], the rules are the collocations, and the instances are the discourses.

[5] cites in particular the algorithm of [59] as falling under the generalized “co-

training” heading. One classifier is registered as in our analysis. The other clas-

sifier is the growing set of labeled documents—a suggestion which seems counter-

intuitive. It is also difficult to accept the “mutually redundant, independently

sufficient, multiple views” in this particular learning scheme.

It may be that some revised version of “co-training” would reflect the reality

of these approaches more accurately. An important common feature may turn out

to be the assignment of relevance rankings to the instances in the instance pool,

rather than to rules only—an essential feature of ExDisco.

As a final comment, the heavy appeal to intuition in this section is itself an

admitted indication of a need for more rigorous investigation.

117

9.5 Conclusion

The results presented in this thesis indicate that our method of corpus analysis can

be used to rapidly identify a large number of relevant event-level patterns without

a pre-classified training corpus.

We also feel that the techniques for generalization in pattern discovery, pro-

posed in the present chapter, offer a potentially great opportunity for combating

sparseness of data.

In conclusion we note that there is much room for further investigation. On

the arts-and-crafts continuum, building effective IE systems remains—for now—

somewhat closer to the former.

118

Appendix A

Sample Source Document

<DOC>

<DOCID> WSJ-demo.1 </DOCID>

<DOCNO> PetDemo00.0720 </DOCNO>

<HL> New Appointment:

@ Sample Patterns for PET

@ ----

@ By Roman Yangarber

@ Staff Reporter for the Proteus Project </HL>

<DD> 07/20/00 </DD>

<SO> WALL STREET JOURNAL (J), PAGE A16 </SO>

<TXT>

<p>

Information Resources Inc.’s London-based European Information

Services operation has appointed George Garrick, 40 years old,

as the new president.

119

<p>

He succeeds Mr. Sloane Talbot, who resigned, citing health reasons.

The decision came late yesterday.

<p>

</TXT>

</DOC>

120

Appendix B

Sample NE Output

<DOC>

<DOCID> WSJ-demo.1 </DOCID>

<DOCNO> PetDemo00.0720 </DOCNO>

<HL> New Appointment:

@ Sample Patterns for PET

@ ----

@ By <ENAMEX TYPE=PERSON>Roman Yangarber</ENAMEX>

@ Staff Reporter for the Proteus Project </HL>

<DD> 07/20/00 </DD>

<SO> WALL STREET JOURNAL (J), PAGE A16 </SO>

<TXT>

<p>

<ENAMEX TYPE=ORGANIZATION>Information Resources Inc.</ENAMEX>’s

<ENAMEX TYPE=LOCATION>London</ENAMEX>-based <ENAMEX

TYPE=ORGANIZATION>European Information Services</ENAMEX> operation has

121

appointed <ENAMEX TYPE=PERSON>George Garrick</ENAMEX>, 40 years old,

as the new president.

<p>

He succeeds Mr. <ENAMEX TYPE=PERSON>Sloane Talbot</ENAMEX>, who

resigned, citing health reasons. The decision came late yesterday.

<p>

</TXT>

</DOC>

122

Appendix C

Sample ST Output

<TEMPLATE-PetDemo00.0720-1> :=

DOC_NR: "PetDemo00.0720"

CONTENT: <SUCCESSION_EVENT-PetDemo00.0720-1>

<SUCCESSION_EVENT-PetDemo00.0720-1> :=

SUCCESSION_ORG: <ORGANIZATION-PetDemo00.0720-1>

POST: "president"

IN_AND_OUT: <IN_AND_OUT-PetDemo00.0720-1>

<IN_AND_OUT-PetDemo00.0720-2>

VACANCY_REASON: OTH_UNK

OFFSETS: ##273#419

<IN_AND_OUT-PetDemo00.0720-1> :=

IO_PERSON: <PERSON-PetDemo00.0720-1>

NEW_STATUS: IN

123

ON_THE_JOB: UNCLEAR

<IN_AND_OUT-PetDemo00.0720-2> :=

IO_PERSON: <PERSON-PetDemo00.0720-2>

NEW_STATUS: OUT

ON_THE_JOB: NO

<ORGANIZATION-PetDemo00.0720-1> :=

ORG_NAME: "European Information Services" ##273#354#

ORG_TYPE: COMPANY

ORG_LOCALE: "London-based" ##302#314#

ORG_COUNTRY: United Kingdom

<PERSON-PetDemo00.0720-1> :=

PER_NAME: "George Garrick" ##369#383#

<PERSON-PetDemo00.0720-2> :=

PER_NAME: "Sloane Talbot" ##440#453#

PER_TITLE: "Mr."

124

Bibliography

[1] Eugene Agichtein and Luis Gravano. Snowball: Extracting relations from large

plain-text collections. In Proceedings of the 5th ACM International Conference

on Digital Libraries (DL’00), 2000. To appear.

[2] D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Kameyama, and M. Tyson. SRI:

Description of the JV-FASTUS System used for MUC-5. In Proc. Fifth Mes-

sage Understanding Conf. (MUC-5), Baltimore, MD, August 1993. Morgan

Kaufmann.

[3] Douglas Appelt, Jerry Hobbs, John Bear, David Israel, and Mabry Tyson.

FASTUS: A finite-state processor for information extraction from real-world

text. In Proc. 13th Int’l Joint Conf. Artificial Intelligence (IJCAI-93), pages

1172–1178, August 1993.

[4] Amit Bagga and Alan Biermann. Analyzing the performance of message under-

standing systems. Technical Report CS-1997-01, Dept. of Computer Science,

Duke University, 1997.

[5] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with

co-training. In Proceedings of the 11th Annual Conference on Computational

125

Learning Theory (COLT-98), pages 92–100, New York, July 24–26 1998. ACM

Press.

[6] Andrew Borthwick, John Sterling, Eugene Agichtein, and Ralph Grishman.

Exploiting diverse knowledge sources via maximum entropy in named entity

recognition. In Proceedings of the Sixth Workshop on Very Large Corpora,

Montreal, Canada, August 1998.

[7] Sergey Brin. Extracting patterns and relations from the world wide web.

In WebDB Workshop at 6th International Conference on Extending Database

Technology, EDBT’98, 1998.

[8] M. E. Califf and R. J. Mooney. Relational learning of pattern-match rules

for information extraction. In Working Notes of AAAI Spring Symposium on

Applying Machine Learning to Discourse Processing, pages 6–11, Menlo Park,

CA, 1998. AAAI Press.

[9] Mary Elaine Califf. Relational Learning Techniques for Natural Lan-

guage Information Extraction. PhD thesis, Department of Computer

Sciences, University of Texas, Austin, TX, August 1998. Also ap-

pears as Artificial Intelligence Laboratory Technical Report AI 98-276 (see

http://www.cs.utexas.edu/users/ai-lab).

[10] Claire Cardie and David Pierce. Proposal for an interactive environment for

information extraction. Technical Report TR98-1702, Cornell University, Com-

puter Science, September 2, 1998.

[11] Michael Collins and Yoram Singer. Unsupervised models for named entity

126

classification. In Proceedings of the Joint SIGDAT Conference on Empiri-

cal Methods in Natural Language Processing and Very Large Corpora, College

Park, MD, June 1999. University of Maryland.

[12] Ido Dagan, Shaul Marcus, and Shaul Markovitch. Contextual word similarity

and estimation from sparse data. In Proceedings of the 31st Annual Meeting

of the Assn. for Computational Linguistics, pages 31–37, Columbus, OH, June

1993.

[13] David Fisher, Stephen Soderland, Joseph McCarthy, Fangfang Feng, and

Wendy Lehnert. Description of the UMass system as used for MUC-6. In

Proc. Sixth Message Understanding Conf. (MUC-6), Columbia, MD, Novem-

ber 1995. Morgan Kaufmann.

[14] Dayne Freitag and Andrew McCallum. Information extraction with HMMs and

shrinkage. In Proceedings of Workshop on Machine Learning and Information

Extraction (AAAI-99), Orlando, FL, July 1999.

[15] The second Garnet compendium: Collected papers, 1990-1992. Technical Re-

port CMU-CS-93-108, Carnegie Mellon University, Computer Science, Febru-

ary 1993.

[16] Michael Gregory. Private communication, 2000.

[17] Ralph Grishman. The NYU system for MUC-6, or where’s the syntax? In

Proc. Sixth Message Understanding Conf. (MUC-6), pages 167–176, Columbia,

MD, November 1995. Morgan Kaufmann.

127

[18] Ralph Grishman. Tipster Phase II Architecture Design Document, Version

1.52. New York University, August 1995.

[19] Ralph Grishman. Information extraction: Techniques and challenges. In

Maria Teresa Pazienza, editor, Information Extraction. Springer-Verlag, Lec-

ture Notes in Artificial Intelligence, Rome, 1997.

[20] Ralph Grishman, Catherine Macleod, and Adam Meyers. Comlex Syntax:

Building a computational lexicon. In Proc. 15th Int’l Conf. Computational

Linguistics (COLING 94), pages 268–272, Kyoto, Japan, August 1994.

[21] Ralph Grishman, Catherine Macleod, and John Sterling. New york university:

Description of the proteus system as used for muc-4. In Proc. Fourth Message

Understanding Conf. (MUC-4), pages 233–241, McLean, VA, June 1992.

[22] Ralph Grishman and John Sterling. New York University: Description of the

PROTEUS System as used for MUC-5. In Proc. Fifth Message Understanding

Conf. (MUC-5), Baltimore, MD, August 1993. Morgan Kaufmann.

[23] Ralph Grishman and Roman Yangarber. Issues in corpus-trained information

extraction. In Proceedings of International Symposium: Toward the Realization

of Spontaneous Speech Engineering, pages 107–112, Tokyo, Japan, February

2000.

[24] Zellig S. Harris. Linguistic transformations for information retrieval. In Pro-

ceedings of International Conference on Scientific Information, 1957.

[25] Lynette Hirschman, Ralph Grishman, and Naomi Sager. Grammatically-based

128

automatic word class formation. Information Processing and Management,

11(1/2):39–57, 1975.

[26] Silja Huttunen. Private communication, 1999.

[27] Silja Huttunen. Private communication, 2000.

[28] Timo Järvinen and Pasi Tapanainen. A dependency parser for English. Tech-

nical Report TR-1, Department of General Linguistics, University of Helsinki,

Finland, February 1997.

[29] Martin Kay and Martin Röscheisen. Text-translation alignment. Computa-

tional Linguistics, 19(1), 1993.

[30] W. Lehnert, C. Cardie, D. Fisher, J. McCarthy, E. Riloff, and S. Soderland.

University of Massachusetts: MUC-4 test results and analysis. In Proc. Fourth

Message Understanding Conf., McLean, VA, June 1992. Morgan Kaufmann.

[31] Catherine Macleod, Ralph Grishman, and Adam Meyers. Creating a common

syntactic dictionary of English. In Proc. Int’l Workshop on Shared Natural

Language Resources, Nara, Japan, August 1994.

[32] Adam Meyers, Catherine Macleod, Roman Yangarber, Ralph Grishman, Leslie

Barrett, and Ruth Reeves. Using NOMLEX to produce nominalization pat-

terns for information extraction. In Proceedings of the COLING-ACL ’98

Workshop on Computational Treatment of Nominals, Montreal, Canada, Au-

gust 1998.

[33] George A. Miller. Wordnet: a lexical database for English. Communications

of the ACM, 38(11):39–41, November 1995.

129

[34] Scott Miller, Michael Crystal, Heidi Fox, Lance Ramshaw, Richard Schwartz,

Rebecca Stone, Ralph Weischedel, and the Annotation Group. Algorithms that

learn to extract information; BBN: Description of the SIFT system as used for

MUC-7. In Proceedings of the Seventh Message Understanding Conference

(MUC-7), Fairfax, VA, 1998.

[35] Tom Mitchell. The role of unlabeled data in supervised learning. In Proceedings

of the Sixth International Colloquium on Cognitive Science, San Sebastian,

Spain, 1999.

[36] Proceedings of the Third Message Understanding Conference (MUC-3). Morgan

Kaufmann, May 1991.

[37] Proceedings of the Fourth Message Understanding Conference (MUC-4). Mor-

gan Kaufmann, June 1992.

[38] Proceedings of the Fifth Message Understanding Conference (MUC-5), Balti-

more, MD, August 1993. Morgan Kaufmann.

[39] Proceedings of the Sixth Message Understanding Conference (MUC-6),

Columbia, MD, November 1995. Morgan Kaufmann.

[40] Proceedings of the Seventh Message Understanding Conference (MUC-7), Fair-

fax, VA, 1998. http://www.muc.saic.com/.

[41] Johanna Nichols. Secondary predicates. Proceedings of the 4th Annual Meeting

of Berkeley Linguistics Society, pages 114–127, 1978.

[42] Maria Teresa Pazienza, editor. Information Extraction. Springer-Verlag, Lec-

ture Notes in Artificial Intelligence, Rome, 1997.

130

[43] Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering

of English words. In Proceedings of the 31st Annual Meeting of the Assn. for

Computational Linguistics, pages 183–190, Columbus, OH, June 1993.

[44] Ellen Riloff. Automatically constructing a dictionary for information extraction

tasks. In Proceedings of Eleventh National Conference on Artificial Intelligence

(AAAI-93), pages 811–816. The AAAI Press/MIT Press, 1993.

[45] Ellen Riloff. Automatically generating extraction patterns from untagged text.

In Proceedings of Thirteenth National Conference on Artificial Intelligence

(AAAI-96), pages 1044–1049. The AAAI Press/MIT Press, 1996.

[46] Ellen Riloff and Rosie Jones. Learning dictionaries for information extraction

by multi-level bootstrapping. In Proceedings of Sixteenth National Conference

on Artificial Intelligence (AAAI-99), Orlando, Florida, 1999.

[47] Naomi Sager, Carol Friedman, and Margaret Lyman. Medical Language Pro-

cessing: Computer Management of Narrative Data. Addison Wesley, 1987.

[48] Yukata Sasaki. Applying type-oriented ILP to IE rule generation. In Proceed-

ings of Workshop on Machine Learning and Information Extraction (AAAI-

99), Orlando, FL, July 1999.

[49] Stephen Soderland. Learning information extraction rules for semi-structured

and free text. Machine Learning, 44(1-3):233–272, 1999.

[50] Tomek Strzalkowski and Jose Perez Carballo. Natural language information

retrieval: TREC-4 report. In Proc. Fourth Text Retrieval Conference, Gaithers-

burg, MD, November 1995.

131

[51] Tomek Strzalkowski and Jin Wang. A self-learning universal concept spotter.

In Proceedings of 16th International Conference on Computational Linguistics

(COLING-96), Copenhagen, August 1996.

[52] Pasi Tapanainen and Timo Järvinen. A non-projective dependency parser.

In Proceedings of the 5th Conference on Applied Natural Language Processing,

pages 64–71, Washington, D.C., April 1997. ACL.

[53] Cynthia A. Thompson, Mary Elaine Califf, and Raymond J. Mooney. Active

learning for natural language parsing and information extraction. In Proc. 16th

International Conf. on Machine Learning, pages 406–414. Morgan Kaufmann,

San Francisco, CA, 1999.

[54] Roman Yangarber. PET: The Proteus Extraction Toolkit. User and Developer

Manual, 1997.

[55] Roman Yangarber and Ralph Grishman. Customization of information ex-

traction systems. In Paola Velardi, editor, International Workshop on Lex-

ically Driven Information Extraction, pages 1–11, Frascati, Italy, July 1997.

Università di Roma.

[56] Roman Yangarber and Ralph Grishman. NYU: Description of the Pro-

teus/PET system as used for MUC-7 ST. In MUC-7: Seventh Message Un-

derstanding Conference, Columbia, MD, April 1998.

[57] Roman Yangarber, Ralph Grishman, Pasi Tapanainen, and Silja Huttunen.

Automatic acquisition of domain knowledge for information extraction. In

132

Proceedings of the 18th International Conference on Computational Linguistics

(COLING 2000), Saarbrücken, Germany, August 2000.

[58] Roman Yangarber, Ralph Grishman, Pasi Tapanainen, and Silja Huttunen.

Unsupervised discovery of scenario-level patterns for information extraction.

In Proceedings of Conference on Applied Natural Language Processing (ANLP-

NAACL’00), Seattle, WA, April 2000.

[59] David Yarowsky. Unsupervised word sense disambiguation rivaling supervised

methods. In Proceedings of the 33rd Annual Meeting of the Association for

Computational Linguistics, pages 189–196, Cambridge, MA, July 24–26 1995.

ACM Press.

133

